300 resultados para Iodide Peroxidase
Resumo:
The metabolisms of reactive nitrogen and oxygen intermediates (RNI and ROI) in patients with cutaneous leishmaniasis (CL) were investigated and compared with those of healthy subjects. To determine RNI metabolism, nitrite plus nitrate concentrations were measured spectrophotometrically. Nitrite concentration in plasma was determined directly by the Griess method. Nitrate levels in plasma were measured after reduction into nitrite by using copper-cadmium-zinc. ROI metabolism was evaluated by measuring erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Plasma nitrite plus nitrate levels and erythrocyte superoxide dismutase activity were higher in the patient group than healthy subjects (p<0.01). In contrast, erythrocyte catalase and glutathione peroxidase activities were lower (p<0.05, p<0.01, respectively). ROI metabolism was altered in relation to hydrogen peroxide elevation in patients with CL. These alterations in ROI enable nitric oxide (NO) to amplify its leishmanicidal effect. The determination of ROI and RNI in patients with CL may be a useful tool to evaluate effector mechanisms of NO and clinical manifestations.
Resumo:
Previous investigations of sensory systems in opecoelid cercariae have focused on chaetotaxy and ultrastructure of sensory receptors. They revealed chaetotaxic patterns within family, genus, and species as well as different receptors. Chaetotaxic and ultrastructural observations have rarely been combined. We investigated the ultrastructure of cercarial sensory receptors in conjunction with chaetotaxy and neuromorphology in a species of Allopodocotyle. Cercariae were treated with acetylthiocholine iodide and silver nitrate, and some were processed for light, scanning (SEM), and transmission (TEM) electron microscopy. Five nerve regions were distinguished. Chaetotaxy was consistent with that of other opecoelids. Five types of receptors were distinguished with SEM. Types differed in number of cilium-like structures (one or more), length of cilium-like structure (short, moderately long, or long), presence or absence of a tegumentary collar, and length of tegumentary collar (low, moderately low, or very high). Internal ultrastructure of some types revealed unsheathed cilium-like structures, basal body, and thickened nerve collars. Possible subtegumentary and sheathed receptors are introduced. Some receptor types were site-specific. For example, receptors with multiple cilium-like structures were concentrated on cephalic region whereas receptors with short cilium-like structure were widespread throughout most regions. Ultrastructure and site-specificity observations suggest that most receptors are mechanoreceptors.
Resumo:
In schistosomiasis, granuloma formation to parasite eggs signals the beginning of a chronic and potentially life-threatening disease. Granulomas are strictly mediated by CD4+ T helper (Th) cells specific for egg antigens; however, the number and identity of these T cell-sensitizing molecules are largely unknown. We have used monoclonal T cell reagents derived from egg-sensitized individuals as probes to track down, isolate and positively identify several egg antigens; this approach implicitly assures that the molecules of interest are T cell immunogens and, hence, potentially pathogenic. The best studied and most abundant egg component is the Sm-p40 antigen. Sm-p40 and its peptide 234-246 elicit a strikingly immunodominant Th-1-polarized response in C3H and CBA mice, which are H-2k strains characterized by severe egg-induced immunopathology. Two additional recently described T cell-sensitizing egg antigens are Schistosoma mansoni phosphoenolpyruvate carboxykinase (Sm-PEPCK) and thioredoxin peroxidase-1 (Sm-TPx-1). In contrast to Sm-p40, both of these molecules induce a more balanced Th-1/Th-2 response, and are relatively stronger antigens in C57BL/6 mice, which develop smaller egg granulomas. Importantly, Sm-p40 and Sm-PEPCK have demonstrated immunogenicity in humans. The findings in the murine model introduce the important notion that egg antigens can vary significantly in immunogenicity according to the host's genetic background. A better knowledge of the principal immunogenic egg components is necessary to determine whether the immune responses to certain antigens can serve as indicators or predictors of the form and severity of clinical disease, and to ascertain whether such responses can be manipulated for the purpose of reducing pathology.
Resumo:
Procedures for IgG depletion in visceral leishmaniasis (VL) and schistosomiasis sera using Sepharose-protein G beads also deplete IgE. In this study, the presence of IgG anti-IgE autoantibodies in sera from patients with VL (n = 10), and hepatic-intestinal schistosomiasis (n = 10) and from healthy individuals (n = 10) was investigated. A sandwich ELISA using goat IgG anti-human IgE to capture serum IgE and goat anti-human IgG peroxidase conjugate to demonstrate the binding of IgG to the IgE captured was performed. VL sera had higher titers (p < 0.05) of IgG anti-IgE autoantibodies (OD = 2.01 ± 0.43) than sera from healthy individuals (OD = 1.35 ± 0.16) or persons infected with Schistosoma mansoni (OD = 1.34 ± 0.18). The immunoblotting carried out with eluates from Sepharose-protein G beads used to deplete IgG from these sera and goat anti-human IgE peroxidase conjugate, showed a similar pattern of bands, predominating the 75 kDa epsilon-heavy chain and also polypeptides resulting from physiological enzymatic digestion of IgE. A frequent additional band immediately above 75 kDa was observed only in VL sera.
Resumo:
Immunodetection of human IgG anti-Toxocara canis was developed based on ELISA and on the use of polysiloxane/polyvinyl alcohol (POS/PVA) beads. A recombinant antigen was covalently immobilized, via glutaraldehyde, onto this hybrid inorganic-organic composite, which was prepared by the sol-gel technique. Using only 31.2 ng antigen per bead, a peroxidase conjugate dilution of 1:10,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates. However, the difference between positive and negative sera mean absorbances was larger for this new glass based assay. In addition to the performance of the POS/PVA bead as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.
Resumo:
Authors describe genitourinary changes in male hamsters infected and reinfected with Trypanosoma cruzi. Changes in genital organs have been described in human and in experimental chagasic infection. Genital dysfunctions in chronic chagasic patients affect ejaculation, libido and sexual potency, and testis biopsies may show arrested maturation of germ cells, oligozoospermia and azoospermia. Sixty-five male hamsters were inoculated and reinoculated with 2x10³ trypomastigotes of T. cruzi VIC strain, and 22 non-infected animals constituted the control group. Animals were necropsied and fragments from testis, epididymis, seminal vesicle and bladder were collected and stained with hematoxylin-eosin. Peroxidase anti-peroxidase procedure was utilized to detect tissue parasitism. T. cruzi nests were found in testis, epididymis and seminal vesicle of these hamsters. Such parasitism plays a role in the origin of genital lesions observed in humans and laboratory animals during chronic chagasic infection.
Resumo:
The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.
Resumo:
Schistosoma mansoni, an intravascular parasite, lives in a hostile environment in close contact with host humoral and cellular cytotoxic factors. To establish itself in the host, the parasite has evolved a number of immune evasion mechanisms, such as antioxidant enzymes. Our laboratory has demonstrated that the expression of antioxidant enzymes is developmentally regulated, with the highest levels present in the adult worm, the stage least susceptible to immune elimination, and the lowest levels in the larval stages, the most susceptible to immune elimination. Vaccination of mice with naked DNA constructs containing Cu/Zn cytosolic superoxide dismutase (CT-SOD), signal-peptide containing SOD or glutathione peroxidase (GPX) showed significant levels of protection compared to a control group. We have further shown that vaccination with SmCT-SOD but not SmGPX results in elimination of adult worms. Anti-oxidant enzyme vaccine candidates offer an advance over existing vaccine strategies that all seem to target the larval developmental stages in that they target adult worms and thus may have therapeutic as well as prophylactic value. To eliminate the potential for cross-reactivity of SmCT-SOD with human superoxide dismutase, we identified parasite-specific epitope-containing peptides. Our results serve as a basis for developing a subunit vaccine against schistosomiasis.
Resumo:
The schistosomicidal properties of Nigella sativaseeds were tested in vitro against Schistosoma mansoni miracidia, cercariae, and adult worms. Results indicate its strong biocidal effects against all stages of the parasite and also showed an inhibitory effect on egg-laying of adult female worms. In the present work we also studied the effects of crushed seeds on some antioxidant enzymes; which have a role in protection of adult worms against host oxidant killing; as well as some enzymes of glucose metabolism; which have a crucial role in the survival of adult worms inside their hosts. The data revealed that the used drug induce an oxidative stress against adult worms which indicated by a decrease in the activities of both antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and glutathione reductase and enzymes of glucose metabolism, hexokinase and glucose-6-phosphate dehydrogenase. Disturbing of such enzymes of adult worms using N. sativa seeds could in turn render the parasite vulnerable to damage by the host and may play a role in the antischistosomal potency of the used drug.
Resumo:
Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.
Resumo:
Malaria remains an important health problem in tropical countries like Brazil. Thrombocytopenia is the most common hematological disturbance seen in malarial infection. Oxidative stress (OS) has been implicated as a possible mediator of thrombocytopenia in patients with malaria. This study aimed to investigate the role of OS in the thrombocytopenia of Plasmodium vivax malaria through the measurement of oxidant and antioxidant biochemical markers in plasma and in isolated platelets. Eighty-six patients with P. vivax malaria were enrolled. Blood samples were analyzed for total antioxidant and oxidant status, albumin, total protein, uric acid, zinc, magnesium, bilirubin, total thiols, glutathione peroxidase (GPx), malondialdehyde (MDA), antibodies against mildly oxidized low-density lipoproteins (LDL-/nLDL ratio) and nitrite/nitrate levels in blood plasma and GPx and MDA in isolated platelets. Plasma MDA levels were higher in thrombocytopenic (TCP) (median 3.47; range 1.55-12.90 µmol/L) compared with the non-thrombocytopenic (NTCP) patients (median 2.57; range 1.95-8.60 µmol/L). Moreover, the LDL-/nLDL autoantibody ratio was lower in TCP (median 3.0; range 1.5-14.8) than in NTCP patients (median 4.0; range 1.9-35.5). Finally, GPx and MDA were higher in the platelets of TPC patients. These results suggest that oxidative damage of platelets might be important in the pathogenesis of thrombocytopenia found in P. vivax malaria as indicated by alterations of GPx and MDA.
Resumo:
E-2-chloro-8-methyl-3-[(4'-methoxy-1'-indanoyl)-2'-methyliden]-quinoline (IQ) is a new quinoline derivative which has been reported as a haemoglobin degradation and ß-haematin formation inhibitor. The haemoglobin proteolysis induced by Plasmodium parasites represents a source of amino acids and haeme, leading to oxidative stress in infected cells. In this paper, we evaluated oxidative status in Plasmodium berghei-infected erythrocytes in the presence of IQ using chloroquine (CQ) as a control. After haemolysis, superoxide dismutase (SOD), catalase, glutathione cycle and NADPH + H+-dependent dehydrogenase enzyme activities were investigated. Lipid peroxidation was also assayed to evaluate lipid damage. The results showed that the overall activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were significantly diminished by IQ (by 53.5% and 100%, respectively). Glutathione peroxidase activity was also lowered (31%) in conjunction with a higher GSSG/GSH ratio. As a compensatory response, overall SOD activity increased and lipid peroxidation decreased, protecting the cells from the haemolysis caused by the infection. CQ shared most of the effects showed by IQ; however it was able to inhibit the activity of isocitrate dehydrogenase and glutathione-S-transferase. In conclusion, IQ could be a candidate for further studies in malaria research interfering with the oxidative status in Plasmodium berghei infection.
Resumo:
Here, we observed the uptake of membrane-impermeant molecules by cercariae as they penetrate the skin and are transformed into schistosomula. We propose that membrane-impermeant molecules, Lucifer Yellow, Propidium iodide and Hoechst 33258 enter the parasite through both thenephridiopore and the surface membrane and then diffuse throughout the body of the parasite. We present a hypothesis that the internal cells of the body of the schistosomulum represent a new host-parasite interface, at which skin-derived growth factors may stimulate receptors on internal membranes during transformation of the cercariae into the schistosomulum.
Resumo:
Semiconductor nanoparticles, such as quantum dots (QDs), were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe) QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells), giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM) is optimal for bioimaging, whereas a high concentration (200 μM CdTe) could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.
Resumo:
In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.