169 resultados para Host immune response
Resumo:
Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.
Resumo:
The acute phase of Trypanosoma cruzi infection is associated with a strong inflammatory reaction in the heart characterised by a massive infiltration of immune cells that is dependent on the T. cruzi strain and the host response. 15d-PGJ2 belongs to a new class of anti-inflammatory compounds with possible clinical applications. We evaluated the effects of 15d-PGJ2 administered during the acute phase of T. cruzi infection in mice. Mice were infected with the Colombian strain of T. cruzi and subsequently treated with 15d-PGJ2 repeatedly for seven days. The inflammatory infiltrate was examined by histologic analysis. Slides were immunohistochemically stained to count the number and the relative size of parasite nests. Infection-induced changes in serum cytokine levels were measured by ELISA. The results demonstrated that treatment with 15d-PGJ2 reduced the inflammatory infiltrate in the skeletal muscle at the site of infection and decreased the number of lymphocytes and neutrophils in the blood. In addition, we found that 15d-PGJ2 led to a decrease in the relative volume density of amastigote nests in cardiac muscle. T. cruzi-infected animals treated with 15d-PGJ2 displayed a statistically significant increase in IL-10 levels with no change in IFN-γ levels. Taken together, we demonstrate that treatment with 15d-PGJ2 in the acute phase of Chagas disease led to a controlled immune response with decreased numbers of amastigote nests, as measured by the volume density.
Resumo:
Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL) characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts). We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1), which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.
Resumo:
Trypanosoma cruzi infection may be caused by different strains with distinct discrete typing units (DTUs) that can result in variable clinical forms of chronic Chagas disease. The present study evaluates the immune response and cardiac lesions in dogs experimentally infected with different T. cruzi strains with distinct DTUs, namely, the Colombian (Col) and Y strains of TcI and TcII DTU, respectively. During infection with the Col strain, increased levels of alanine aminotransferase, erythrocytes, haematocrit and haemoglobin were observed. In addition, CD8+ T-lymphocytes isolated from the peripheral blood produced higher levels of interleukin (IL)-4. The latter suggests that during the acute phase, infection with the Col strain may remain unnoticed by circulating mononuclear cells. In the chronic phase, a significant increase in the number of inflammatory cells was detected in the right atrium. Conversely, infection with the Y strain led to leucopoenia, thrombopoenia, inversion of the ratio of CD4+/CD8+ T-lymphocytes and alterations in monocyte number. The Y strain stimulated the production of interferon-γ by CD4+ and CD8+ T-lymphocytes and IL-4 by CD8+ T-cells. In the chronic phase, significant heart inflammation and fibrosis were observed, demonstrating that strains of different DTUs interact differently with the host.
Resumo:
Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.
Resumo:
Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, does not synthesize sialic acid, but expresses a trans-sialidase (TS) that catalyzes the transfer of sialic acid from host glycoconjugates to the parasite surface. Here, we review studies that characterize the immune response to the catalytic domain of the enzyme in humans during Chagas' disease or in mice following immunization with the TS gene. In both cases, there are antibodies that strongly inhibit the enzymatic activity and generation of interferon-g-producing T cells.
Resumo:
We previously reported that a DNA vaccine constructed with the heat shock protein (HSP65) gene from Mycobacterium leprae (DNA-HSP65) was protective and also therapeutic in experimental tuberculosis. By the intramuscular route, this vaccine elicited a predominant Th1 response that was consistent with its protective efficacy against tuberculosis. It has been suggested that the immune response to Hsp60/65 may be the link between exposure to microorganisms and increased cardiovascular risk. Additionally, the high cholesterol levels found in atherosclerosis could modulate host immunity. In this context, we evaluated if an atherogenic diet could modulate the immune response induced by the DNA-HSP65 vaccine. C57BL/6 mice (4-6 animals per group) were initially submitted to a protocol of atherosclerosis induction and then immunized by the intramuscular or intradermal route with 4 doses of 100 µg DNA-HSP65. On day 150 (15 days after the last immunization), the animals were sacrificed and antibodies and cytokines were determined. Vaccination by the intramuscular route induced high levels of anti-Hsp65 IgG2a antibodies, but not anti-Hsp65 IgG1 antibodies and a significant production of IL-6, IFN-g and IL-10, but not IL-5, indicating a Th1 profile. Immunization by the intradermal route triggered a mixed pattern (Th1/Th2) characterized by synthesis of anti-Hsp65 IgG2a and IgG1 antibodies and production of high levels of IL-5, IL-6, IL-10, and IFN-g. These results indicate that experimentally induced atherosclerosis did not affect the ability of DNA-HSP65 to induce a predominant Th1 response that is potentially protective against tuberculosis.
Resumo:
Intense immune responses are observed during human or experimental infection with the digenetic protozoan parasite Trypanosoma cruzi. The reasons why such immune responses are unable to completely eliminate the parasites are unknown. The survival of the parasite leads to a parasite-host equilibrium found during the chronic phase of chagasic infection in most individuals. Parasite persistence is recognized as the most likely cause of the chagasic chronic pathologies. Therefore, a key question in Chagas' disease is to understand how this equilibrium is established and maintained for a long period. Understanding the basis for this equilibrium may lead to new approaches to interventions that could help millions of individuals at risk for infection or who are already infected with T. cruzi. Here, we propose that the phenomenon of immunodominance may be significant in terms of regulating the host-parasite equilibrium observed in Chagas' disease. T. cruzi infection restricts the repertoire of specific T cells generating, in some cases, an intense immunodominant phenotype and in others causing a dramatic interference in the response to distinct epitopes. This immune response is sufficiently strong to maintain the host alive during the acute phase carrying them to the chronic phase where transmission usually occurs. At the same time, immunodominance interferes with the development of a higher and broader immune response that could be able to completely eliminate the parasite. Based on this, we discuss how we can interfere with or take advantage of immunodominance in order to provide an immunotherapeutic alternative for chagasic individuals.
Resumo:
Rubinstein-Taybi syndrome (RTS) is a rare developmental disorder characterized by craniofacial dysmorphisms, broad thumbs and toes, mental and growth deficiency, and recurrent respiratory infections. RTS has been associated with CREBBP gene mutations, but EP300 gene mutations have recently been reported in 6 individuals. In the present study, the humoral immune response in 16 RTS patients with recurrent respiratory infections of possible bacterial etiology was evaluated. No significant differences between patients and 16 healthy controls were detected to explain the high susceptibility to respiratory infections: normal or elevated serum immunoglobulin levels, normal salivary IgA levels, and a good antibody response to both polysaccharide and protein antigens were observed. However, most patients presented high serum IgM levels, a high number of total B cell and B subsets, and also high percentiles of apoptosis, suggesting that they could present B dysregulation. The CREBBP/p300 family gene is extremely important for B-cell regulation, and RTS may represent an interesting human model for studying the molecular mechanisms involved in B-cell development.
Resumo:
The experimental model of paracoccidioidomycosis induced in mice by the intravenous injection of yeast-forms of P. brasiliensis (Bt2 strain; 1 x 10(6) viable fungi/animal) was used to evaluate sequentially 2, 4, 8, 16 and 20 weeks after inoculation: 1. The presence of immunoglobulins and C3 in the pulmonary granuloma-ta, by direct immunofluorescence; 2. The humoral (immunodiffusion test) and the cellular (footpad sweeling test) immune response; 3. The histopathology of lesions. The cell-immune response was positive since week 2, showing a transitory depression at week 16. Specific antibodies were first detected at week 4 and peaked at week 16. At histology, epithelioid granulomas with numerous fungi and polymorphonuclear agreggates were seen. The lungs showed progressive involvement up to week 16, with little decrease at week 20. From week 2 on, there were deposits of IgG and C3 around fungal walls within the granulomas and IgG stained cells among the mononuclear cell peripheral halo. Interstitital immunoglobulins and C3 deposits in the granulomas were not letected. IgG and C3 seen to play an early an important role in. the host defenses against P. brasiliensis by possibly cooperating in the killing of parasites and blocking the antigenic diffusion.
Resumo:
Immune response against hepatitis B vaccine (CLB 3mg) was evaluated in 59 hemodialysis patients and 20 occupational risk personnel. Seroconversion was induced in 52.5% and 70.0% respectively. Twelve months after the first dose, 37.5% of patients and 60.0% of occupational risk personnel had detectable anti-HBs level. Antibody level was expressed in sample ratio units (SRU). Considering only the responders, in the patients group 38.7% had a low anti-HBs response (2.1-9.9 SRU) 32.3% a medium response (10-99.9 SRU) and 29.0% a high response (>100 SRU) while in occupational risk personnel these values were 14.3%, 64.3% and 21.4% respectively. The authors suggest the use of HBV vaccines with more elevated HBsAg concentration or a reinforced immunization schedule to improve the anti-HBs response not only for patients but also for healthy persons.
Resumo:
A previous seroepidemiological study in the rural zone of Vargem Alta (ES) SouthEast of Brazil, showed a prevalence of up to 9% of hepatitis B surface antigen (HBsAg) in some areas. One hundred susceptible children aging 1 to 5 years old were selected and immunized with a recombinant DNA hepatitis B vaccine (Smith-Kline 20 mcg) using the 0-1-6 months vaccination schedule. Blood samples were collected at the time of the first vaccine dose (month 0) in order to confirm susceptible individuals and 1,3,6 and 8 months after the first dose , to evaluate the antibody response. Our results showed that two and five months after the second dose, 79% and 88% of children seroconverted respectively, reaching 97% after the third dose. The levels of anti-HBs were calculated in milli International Units/ml (mIU/ml) and demonstrated the markedly increase of protective levels of antibodies after the third dose. These data showed a good immunogenicity of the DNA recombinant hepatitis B vaccine when administered in children of endemic areas.
Resumo:
The possibility that some virus contaminants could be altering host response to Trypanosoma cruzi experimental infection was investigated. Data obtained showed that CBA/J mice infected with stocks of parasite maintained in mice (Y1UEC) presented higher level of parasitemia and shorter survival times than those infected with a stock (Y1TC) which was also maintained in mice but had been previously passaged in cell culture. Mouse antibody production tests, performed with the filtered plasma of mice infected with Y1UEC, indicated the presence of mouse hepatitis virus (MHV) while no virus was detected when testing the plasma of Y1TC infected mice. Filtered plasma of Y1EUC infected mice was shown to contain a factor able to enhance the level of parasitemia and to reduce the mean survival time of mice challenged with 10(5) Y1TC. This factor, that could be serially passaged to naïve mice was shown to be a coronavirus by neutralization tests.
Resumo:
Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.
Resumo:
The mechanisms that determine viral clearance or viral persistence in chronic viral hepatitis have yet to be identified. Recent advances in molecular genetics have permitted the detection of variations in immune response, often associated with polymorphism in the human genome. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virulence of microbial agents. Several recent advances concerning the influence of human genes in chronic viral hepatitis B and C are discussed in this article: a) the associations between human leukocyte antigen polymorphism and viral hepatic disease susceptibility or resistance; b) protective alleles influencing hepatitis B virus (HBV) and hepatitis C virus (HCV) evolution; c) prejudicial alleles influencing HBV and HCV; d) candidate genes associated with HBV and HCV evolution; d) other genetic factors that may contribute to chronic hepatitis C evolution (genes influencing hepatic stellate cells, TGF-beta1 and TNF-alpha production, hepatic iron deposits and angiotensin II production, among others). Recent discoveries regarding genetic associations with chronic viral hepatitis may provide clues to understanding the development of end-stage complications such as cirrhosis or hepatocellular carcinoma. In the near future, analysis of the human genome will allow the elucidation of both the natural course of viral hepatitis and its response to therapy.