250 resultados para Geradores de números aleatórios
Resumo:
A cardiomiopatia hipertrófica é uma doença genética prevalente caracterizada por hipertrofia ventricular esquerda, em que obstrução dinâmica da via de saída com geração de gradiente subaórtico incide em repouso em 30% dos casos. A obstrução é atribuida complexa interação entre o folheto anterior mitral, o septo interventricular e vetores anômalos de fluxo gerados no ventrículo esquerdo aliada a modificações na geometria da via de saída. Regurgitação mitral em grau variável é detectada associada ou não a deformidades estruturais do aparelho valvar. O ecocardiograma de esforço demonstra obstrução latente facilmente induzida por exercício em 60 a 75% das formas não obstrutivas. A determinação do gradiente nessas condições impõe-se na investigação de rotina dos pacientes com obstrução leve ou ausente em repouso. A avaliação da cardiomiopatia hipertrófica incorpora métodos de imagem baseados no ultrassom, os quais, adicionados ressonância magnética, possibilitam o reconhecimento de mecanismos geradores de obstrução ventricular, de modo a favorecer o diagnóstico e o manejo das formas obstrutivas e obstrutivas latentes.
Resumo:
FUNDAMENTO: Dados de atendimento ambulatorial ao paciente de alto risco cardiovascular no Brasil são insuficientes. OBJETIVO: Descrever o perfil e documentar a prática clínica do atendimento ambulatorial de pacientes de alto risco cardiovascular no Brasil, no que diz respeito à prescrição de terapias baseadas em evidências. MÉTODOS: Registro prospectivo que documentou a prática clínica ambulatorial de indivíduos de alto risco cardiovascular, que foi definido como a presença de um dos seguintes fatores: doença arterial coronariana, cerebrovascular e vascular periférica; diabetes; ou aqueles com pelo menos três dos seguintes fatores: hipertensão arterial, tabagismo, dislipidemia, maiores 70 anos, histórico familiar de doença arterial coronariana, nefropatia crônica ou doença carotídea assintomática. Foram avaliadas características basais e a taxa de prescrição das intervenções medicamentosas e não medicamentosas. RESULTADOS: Foram incluídos 2.364 pacientes consecutivos, sendo 52,2% do gênero masculino, idade média de 66,0 anos (± 10,1). Dentre os pacientes incluídos, 78,3% utilizavam antiplaquetários, 77,0% estatinas e, dos pacientes com história de infarto do miocárdio, 58,0% receberam betabloqueadores. O uso concomitante destas três classes foi de 34%. Não atingiram as metas preconizadas pelas diretrizes 50,9% dos hipertensos, 67% dos diabéticos e 25,7% dos dislipidêmicos. Os principais preditores de prescrição de terapias com benefício comprovado foram centro com cardiologista e histórico de doença arterial coronariana. CONCLUSÃO: Este registro nacional e representativo identificou hiatos importantes na incorporação de terapias com benefício comprovado, oferecendo um panorama real dos pacientes de alto risco cardiovascular.
Resumo:
FUNDAMENTO: O impacto do uso do ultrassom intracoronariano (USIC) na implantação de stents tem resultados inconclusivos. OBJETIVO: Revisão sistemática, com metanálise, do impacto do USIC na implantação de stents quanto à evolução clínica e angiográfica. MÉTODOS: Efetuada busca nas bases Medline/Pubmed, CENTRAL, Embase, Lilacs, Scopus e Web of Science. Incluídos estudos clínicos randomizados (ECR) que avaliaram o implante de stents, orientados pela USIC, comparados com aqueles utilizando a angiografia isoladamente (ANGIO). O intervalo mínimo de acompanhamento foi de seis meses, avaliados os desfechos: trombose, mortalidade, infarto do miocárdio, revascularização percutânea e cirúrgica, eventos cardiovasculares maiores (ECVM) e reestenose. Os desfechos binários foram apresentados considerando o número de eventos em cada grupo; as estimativas foram geradas por um modelo de efeitos aleatórios, considerando a estatística de Mantel-Haenzel como ponderadora e magnitude de efeito ao risco relativo (RR) com seu respectivo intervalo de confiança de 95% (IC 95%). Para quantificação da consistência entre os resultados de cada estudo, utilizou-se o teste de inconsistência I² de Higgins. RESULTADOS: Avaliados 2.689 artigos, incluídos 8 ECR. Houve redução de 27% na reestenose angiográfica (RR: 0,73; IC 95%: 0,54 - 0,97; I² = 51%) e redução estatisticamente significativa nas taxas de revascularizações percutânea e geral (RR: 0,88; IC 95%: 0,51 - 1,53; I² = 61% e RR: 0,73; IC 95%: 0,54 - 0,99; I² = 55%), sem diferença estatística na revascularização cirúrgica (RR: 0,95; IC 95%: 0,52 - 1,74; I² = 0%) em favor do USIC vs. ANGIO. Não foram observadas diferenças nos demais desfechos na comparação entre as duas estratégias. CONCLUSÃO: Angioplastias com implante de stents guiadas por USIC reduzem taxas de reestenose e de revascularizações, não tendo impacto nos desfechos ECVM, infarto agudo do miocárdio, mortalidade ou trombose.
Resumo:
FUNDAMENTO: Apesar da evolução tecnológica do cardiodesfibrilador implantável, uma das questões que permanece em aberto é sobre o eventual benefício do cardiodesfibrilador implantável de dupla câmara comparativamente ao de câmara única, para diminuir os choques inapropriados. OBJETIVO: Avaliar, em pacientes com cardiodesfibrilador implantável, qual é o tipo de dispositivo que proporciona menor número de choques inapropriados (câmara dupla versus câmara única). MÉTODOS: Meta-análise da literatura publicada, de estudos randomizados, comparando cardiodesfibrilador implantável de câmara dupla ao de câmara única, que tenham, como endpoint avaliado, a ocorrência de choques inapropriados. RESULTADOS: O cardiodesfibrilador implantável de câmara dupla não mostrou benefícios na redução do número de pacientes com choques inapropriados. Pelo contrário, na análise de efeitos fixos, a associação foi tendencialmente favorável ao cardiodesfibrilador implantável de câmara única (OR = 1,53; IC95%: 0,91-2,57), não obstante a ausência de significado estatístico (p = 0,11). Merece destaque a heterogenia observada nos resultados (I2 = 53%), o que motivou a replicação da análise utilizando um modelo de efeitos aleatórios. No entanto, as diferenças significativas permaneceram na ocorrência de choques inapropriados em ambos os grupos (OR = 1,1; IC95%: 0,37-3,31; p = 0,86). Para complementar a análise, procedeu-se à análise de sensibilidade, na qual se verificou que a exclusão de um estudo resultava na mais baixa heterogenia observada (I2=24%) e na associação com os choques inapropriados significativamente favorável ao cardiodesfibrilador de câmara única (OR = 1,91; IC95%: 1,09-3,37; p = 0,27). CONCLUSÕES: Verificou-se a não existência de evidência clara de superioridade de qualquer um dos dispositivos avaliados.
Resumo:
1) Chamamos um desvio relativo simples o quociente de um desvio, isto é, de uma diferença entre uma variável e sua média ou outro valor ideal, e o seu erro standard. D= v-v/ δ ou D = v-v2/δ Num desvio composto nós reunimos vários desvios de acordo com a equação: D = + Σ (v - 2)²: o o = o1/ o o Todo desvio relativo é caracterizado por dois graus de liberdade (número de variáveis livres) que indicam de quantas observações foi calculado o numerador (grau de liberdade nf1 ou simplesmente n2) e o denominador (grau de liberdade nf2 ou simplesmente n2). 2) Explicamos em detalhe que a chamada distribuição normal ou de OAUSS é apenas um caso especial que nós encontramos quando o erro standard do dividendo do desvio relativo é calculado de um número bem grande de observações ou determinado por uma fórmula teórica. Para provar este ponto foi demonstrado que a distribuição de GAUSS pode ser derivada da distribuição binomial quando o expoente desta torna-se igual a infinito (Fig.1). 3) Assim torna-se evidente que um estudo detalhado da variação do erro standard é necessário. Mostramos rapidamente que, depois de tentativas preliminares de LEXIS e HELMERT, a solução foi achada pelos estatísticos da escola londrina: KARL PEARSON, o autor anônimo conhecido pelo nome de STUDENT e finalmente R. A. FISHER. 4) Devemos hoje distinguir quatro tipos diferentes de dis- tribuições de acaso dos desvios relativos, em dependência de combinação dos graus de liberdade n1 e n2. Distribuição de: fisher 1 < nf1 < infinito 1 < nf2 < infinito ( formula 9-1) Pearson 1 < nf1 < infinito nf 2= infinito ( formula 3-2) Student nf2 = 1 1 < nf2= infinito ( formula 3-3) Gauss nf1 = 1 nf2= infinito ( formula 3-4) As formas das curvas (Fig. 2) e as fórmulas matemáticas dos quatro tipos de distribuição são amplamente discutidas, bem como os valores das suas constantes e de ordenadas especiais. 5) As distribuições de GAUSS e de STUDENT (Figs. 2 e 5) que correspondem a variação de desvios simples são sempre simétricas e atingem o seu máximo para a abcissa D = O, sendo o valor da ordenada correspondente igual ao valor da constante da distribuição, k1 e k2 respectivamente. 6) As distribuições de PEARSON e FISHER (Fig. 2) correspondentes à variação de desvios compostos, são descontínuas para o valor D = O, existindo sempre duas curvas isoladas, uma à direita e outra à esquerda do valor zero da abcissa. As curvas são assimétricas (Figs. 6 a 9), tornando-se mais e mais simétricas para os valores elevados dos graus de liberdade. 7) A natureza dos limites de probabilidade é discutida. Explicámos porque usam-se em geral os limites bilaterais para as distribuições de STUDENT e GAUSS e os limites unilaterais superiores para as distribuições de PEARSON e FISHER (Figs. 3 e 4). Para o cálculo dos limites deve-se então lembrar que o desvio simples, D = (v - v) : o tem o sinal positivo ou negativo, de modo que é em geral necessário determinar os limites bilaterais em ambos os lados da curva (GAUSS e STUDENT). Os desvios relativos compostos da forma D = O1 : o2 não têm sinal determinado, devendo desprezar-se os sinais. Em geral consideramos apenas o caso o1 ser maior do que o2 e os limites se determinam apenas na extremidade da curva que corresponde a valores maiores do que 1. (Limites unilaterais superiores das distribuições de PEARSON e FISHER). Quando a natureza dos dados indica a possibilidade de aparecerem tanto valores de o(maiores como menores do que o2,devemos usar os limites bilaterais, correspondendo os limites unilaterais de 5%, 1% e 0,1% de probabilidade, correspondendo a limites bilaterais de 10%, 2% e 0,2%. 8) As relações matemáticas das fórmulas das quatro distribuições são amplamente discutidas, como também a sua transformação de uma para outra quando fazemos as necessárias alterações nos graus de liberdade. Estas transformações provam matematicamente que todas as quatro distribuições de acaso formam um conjunto. Foi demonstrado matematicamente que a fórmula das distribuições de FISHER representa o caso geral de variação de acaso de um desvio relativo, se nós extendermos a sua definição desde nfl = 1 até infinito e desde nf2 = 1 até infinito. 9) Existe apenas uma distribuição de GAUSS; podemos calcular uma curva para cada combinação imaginável de graus de liberdade para as outras três distribuições. Porém, é matematicamente evidente que nos aproximamos a distribuições limitantes quando os valores dos graus de liberdade se aproximam ao valor infinito. Partindo de fórmulas com área unidade e usando o erro standard como unidade da abcissa, chegamos às seguintes transformações: a) A distribuição de STUDENT (Fig. 5) passa a distribuição de GAUSS quando o grau de liberdade n2 se aproxima ao valor infinito. Como aproximação ao infinito, suficiente na prática, podemos aceitar valores maiores do que n2 = 30. b) A distribuição de PEARSON (Fig. 6) passa para uma de GAUSS com média zero e erro standard unidade quando nl é igual a 1. Quando de outro lado, nl torna-se muito grande, a distribuição de PEARSON podia ser substituída por uma distribuição modificada de GAUSS, com média igual ale unidade da abcissa igual a 1 : V2 n 1 . Para fins práticos, valores de nl maiores do que 30 são em geral uma aproximação suficiente ao infinito. c) Os limites da distribuição de FISHER são um pouco mais difíceis para definir. I) Em primeiro lugar foram estudadas as distribuições com n1 = n2 = n e verificamos (Figs. 7 e 8) que aproximamo-nos a uma distribuição, transformada de GAUSS com média 1 e erro standard l : Vn, quando o valor cresce até o infinito. Como aproximação satisfatória podemos considerar nl = n2 = 100, ou já nl =r n2 - 50 (Fig. 8) II) Quando n1 e n2 diferem (Fig. 9) podemos distinguir dois casos: Se n1 é pequeno e n2 maior do que 100 podemos substituir a distribuição de FISHER pela distribuição correspondente de PEARSON. (Fig. 9, parte superior). Se porém n1é maior do que 50 e n2 maior do que 100, ou vice-versa, atingimos uma distribuição modificada de GAUSS com média 1 e erro standard 1: 2n1 n3 n1 + n2 10) As definições matemáticas e os limites de probabilidade para as diferentes distribuições de acaso são dadas em geral na literatura em formas bem diversas, usando-se diferentes sistemas de abcissas. Com referência às distribuições de FISHER, foi usado por este autor, inicialmente, o logarítmo natural do desvio relativo, como abcissa. SNEDECOR (1937) emprega o quadrado dos desvios relativos e BRIEGER (1937) o desvio relativo próprio. As distribuições de PEARSON são empregadas para o X2 teste de PEARSON e FISHER, usando como abcissa os valores de x² = D². n1 Foi exposto o meu ponto de vista, que estas desigualdades trazem desvantagens na aplicação dos testes, pois atribui-se um peso diferente aos números analisados em cada teste, que são somas de desvios quadrados no X2 teste, somas des desvios quadrados divididos pelo grau de liberdade ou varianças no F-teste de SNEDECOR, desvios simples no t-teste de STUDENT, etc.. Uma tábua dos limites de probabilidade de desvios relativos foi publicada por mim (BRIEGER 1937) e uma tábua mais extensa será publicada em breve, contendo os limites unilaterais e bilaterais, tanto para as distribuições de STUDENT como de FISHER. 11) Num capítulo final são discutidas várias complicações que podem surgir na análise. Entre elas quero apenas citar alguns problemas. a) Quando comparamos o desvio de um valor e sua média, deveríamos corretamente empregar também os erros de ambos estes valores: D = u- u o2 +²5 Mas não podemos aqui imediatamente aplicar os limites de qualquer das distribuições do acaso discutidas acima. Em geral a variação de v, medida por o , segue uma distribuição de STUDENT e a variação da média V segue uma distribuição de GAUSS. O problema a ser solucionado é, como reunir os limites destas distribuições num só teste. A solução prática do caso é de considerar a média como uma constante, e aplicar diretamente os limites de probabilidade das dstribuições de STUDENT com o grau de liberdade do erro o. Mas este é apenas uma solução prática. O problema mesmo é, em parte, solucionado pelo teste de BEHRENDS. b) Um outro problema se apresenta no curso dos métodos chamados "analysis of variance" ou decomposição do erro. Supomos que nós queremos comparar uma média parcial va com a média geral v . Mas podemos calcular o erro desta média parcial, por dois processos, ou partindo do erro individual aa ou do erro "dentro" oD que é, como explicado acima, uma média balançada de todos os m erros individuais. O emprego deste último garante um teste mais satisfatório e severo, pois êle é baseado sempre num grau de liberdade bastante elevado. Teremos que aplicar dois testes em seguida: Em primeiro lugar devemos decidir se o erro ou difere do êrro dentro: D = δa/δ0 n1 = np/n2 m. n p Se este teste for significante, uma substituição de oa pelo oD não será admissível. Mas mesmo quando o resultado for insignificante, ainda não temos certeza sobre a identidade dos dois erros, pois pode ser que a diferença entre eles é pequena e os graus de liberdade não são suficientes para permitir o reconhecimento desta diferença como significante. Podemos então substituirmos oa por oD de modo que n2 = m : np: D = V a - v / δa Np n = 1 n2 = np passa para D = v = - v/ δ Np n = 1 n2 = m.n p as como podemos incluir neste último teste uma apreciação das nossas dúvidas sobre o teste anterior oa: oD ? A melhor solução prática me parece fazer uso da determinação de oD, que é provavelmente mais exata do que oa, mas usar os graus de liberdade do teste simples: np = 1 / n2 = np para deixar margem para as nossas dúvidas sobre a igualdade de oa a oD. Estes dois exemplos devem ser suficientes para demonstrar que apesar dos grandes progressos que nós podíamos registrar na teoria da variação do acaso, ainda existem problemas importantes a serem solucionados.
Resumo:
1) O caráter presença de espinhos nos frutos da mamoneira é determinado por um par de fatores dominantes SS, sendo a forma recessiva ss, inerme. A interação alélica nao é bem intermediária, havendo uma predominância do fator S. Êste resultado foi anteriormente constatado por HARLAND (7), PEAT (8), DOMINGO (2), GURGEL (4) e FERNANDES (3). 2) A constatação da segregação 1 SS : 2 Ss : 1 ss foi feita após extensivas contagens de espinhos, tanto na forma paternal, como também no Fl, F2 e "back-cross". Por essas contagens foi verificado que existem variedades com números diferentes de espinhos, podendo-se distinguir dois tipos: variedades que têm muitos espinhos, com uma média aproximada de 170 espinhos por fruto e variedades que têm um número médio de espinhos, com uma média aproximada de 113 espinhos por fruto. 3) Embora a segregação dos fatores S e s seja monofatorial, todavia foi constadada por uma análise estatística detalhada, a presença de gens modificadores agindo na geração F2, introduzidos pelos tipos paternais. Assim, o segregante SS no F2, tem mais espinhos do que o pai homozigoto da mesma constituição. 4) Foram encontrados dois novos gens cal e ca2, com interação não alélica do tipo de polimeria complementar duplo-recessiva, dando no F2 uma segregação de 15 com espinhos uniformes : 1 com espinho careca, no "back-cross" uma segregação de 3 com espinhos uniformes : 1 com espinho careca. Estes gens determinaram, nos frutos com espinhos, a formação de zonas sem espinhos, ou como denominamos, "carecas". Estes novos fatores foram encontrados numa única variedade, de n.° 51, conhecida por laciniada, em virtude da for- ma especial de suas fôlhas. Esta variedade é de côr verde, apresenta cera na haste e possui numerosos cachos, porém pequenos. Ê tida como planta ornamental e foi originalmente importada de Erfurt, Alemanha. 5) Mesmo nas variedades inermes foi constatada a presença dos gens Cal e Ca2, para distribuição uniforme de espinhos, embora nas ditas variedades não se possa identificar a sua presença, em virtude do gen s ser epistático recessivo sobre Cal e Ca2. 6) Uma vez que os fatores S e CalCa2 sao independentes, isto é, possivelmente situados em cromosômios diferentes, fazendo-se o cruzamento de variedades com espinho careca x variedades sem espinho, obtem-se o PI com número de espinhos intermediário e distribuição uniforme. No F2 obtém-se a segregação de 45 com espinho uniforme : 3 com espinho careca : 16 sem espinho e no "back-cross" a segregação de 3 com espinho uniforme : 1 com espinho careca : 4 sem espinho.
Resumo:
Na aplicação do X2-teste devemos distinguir dois casos : Á) Quando as classes de variáveis são caracterizadas por freqüências esperadas entre p = 0,1 e p = 0,9, podemos aplicar o X2-teste praticamente sem restrição. É talvez aconselhável, mas não absolutamente necessário limitar o teste aos casos nos quais a freqüência esperada é pelo menos igual a 5. e porisso incluimos na Táboa II os limites da variação de dois binômios ( 1/2 + 1/2)n ( 1/4 + 3/4)n para valo r es pequenos de N e nos três limites convencionais de precisão : ,5%, 1% e 0,1%. Neste caso, os valores dos X2 Índividuais têm apenas valor limitado e devemos sempre tomar em consideração principalmente o X2 total. O valor para cada X2 individual pode ser calculado porqualquer das expressôe seguintes: x2 = (f obs - f esp)²> f. esp = ( f obs - pn)2 pn = ( f obs% - p)2.N p% (100 - p%) O delta-teste dá o mesmo resultado estatístico como o X2-teste com duas classes, sendo o valor do X2-total algébricamente igual ao quadrado do valor de delta. Assim pode ser mais fácil às vezes calcular o X2 total como quadrado do desvio relativo da. variação alternativa : x² = ( f obs -pn)² p. (1-p)N = ( f obs - p %)2.N p% (100 - p%) B) Quando há classes com freqüência esperada menor do que p = 0,1, podemos analisar os seus valores individuais de X2, e desprezar o valor X2 para as classes com p maior do que 0,9. O X2-teste, todavia, pode agora ser aplicado apenas, quando a freqüência esperada for pelo menos igual ou maior do que 5 ou melhor ainda, igual ou maior do que 10. Quando a freqüência esperada for menor do que 5, a variação das freqüências observadas segue uma distribuição de Poisson, não sendo possível a sua substituição pela aproximação Gausseana. A táboa I dá os limites da variação da série de Poisson para freqüências esperadas (em números) desde 0,001 até 15. A vantagem do emprego da nova táboa I para a comparação, classe por classe, entre distribuições esperadas e observadas é explicada num exemplo concreto. Por meio desta táboa obtemos informações muito mais detablhadas do que pelo X2-teste devido ao fato que neste último temos que reunir as classes nas extremidades das distribuições até que a freqüência esperada atinja pelo menos o valor 5. Incluimos como complemento uma táboa dos limites X2, pára 1 até 30 graus de liberdade, tirada de um outro trabalho recente (BRIEGER, 1946). Para valores maiores de graus da liberdade, podemos calcular os limites por dois processos: Podemos usar uma solução dada por Fischer: √ 2 X² -√ 2 nf = delta Devem ser aplicados os limites unilaterais da distribuição de Gauss : 5%:1, 64; 1%:2,32; 0,1%:3,09: Uma outra solução podemos obter segundo BRIEGER (1946) calculando o valor: √ x² / nf = teta X nf = teta e procurando os limites nas táboas para limites unilaterais de distribuições de Fischer, com nl = nf(X2); n2 = inf; (BRIEGER, 1946).
Resumo:
Êste trabalho estuda estatísticamente dados sôbre café rebeneficiado por cooperativas de cafeicultores do Estado de São Paulo. Seis cooperativas foram estudadas, com um total de 289 partidas de café. Em cada partida se determinou a média ponderada, do número de defeitos, antes e depois do rebeneficiamento. As raízes quadradas dos dados assim obtidos é que foram analisados. Melhoria estatisticamente significativa do tipo do café foi comprovada em tôdas as cooperativas, com uma única exceção, referente à Cooperativa da Média Sorocabana, onde a diminuição do número de defeitos não atingiu o nível de significância. Esta exceção da Cooperativa da Média Sorocabana provàvelmente se deve às seguintes razões: a) Apenas 7 partidas de café foram beneficiadas. b) A Cooperativa, ainda nova, não dispunha ainda de equipamento completo. Resultados excelentes foram obtidos, por exemplo, na Cooperativa dos Cafeicultores da Alta Mogiana, onde a diferênça observada foi significativa ao nível de 1% de probabilidade. As médias foram as seguintes: Média das raízes quadradas dos números de defeitos antes do rebeneficiamento = 7,81 ± 0,21. Média das raízes quadradas dos números de defeitos depois do rebeneficiamento = 3,53 ± 4,21. Estas médias correspondem a 61 defeitos para o café antes do rebeneficiamento, e 12 depois dêle.
Resumo:
No presente trabalho foi determinada a contagem total de bactérias (incubação a 32°C e a 5°C) existentes na superfície de alguns cortes de varejo de carne bovina comercializada por tres supermercados de Piracicaba, SP, bem como da superfície de diversos tipos de equipamento utilizado nas salas de desossa desses estabelecimentos. Foi determinado também o número mais provável (NMP) de coliformes totais e, para um grupo de amostras de carne, o NMP de Escherichia coli. Para um dos supermercados (o mais antigo e menos adequado sob o aspecto sanitário) foi possível constatar uma diferença significativa entre as contagens totais em cortes recebidos já desossados pelo estabelecimento, a favor destes, e as contagens em cortes preparados na sala de desossa. O equipamento, tanto no estado considerado limpo (após o dia de trabalho) e aquele em uso apresentaram contagens totais excessivas; não houve diferença significativa entre um e outro caso, e, em ambos, a temperatura de incubação 32°C resultou em valores estatisticamente superiores aos obtidos com a incubação a 5°C. As contagens provenientes de análises de superfícies de madeira foram significativamente mais elevadas que as verificadas em superfícies metálicas (serra elétrica, facas, afiadores). A ocorrência de coliformes totais foi geral, tanto na carne como no equipamento, muitas vezes em números elevados. Em amostras de carne, analisadas quanto à presença e ao número de coliformes totais e de Escherichia coli, verificou-se que 96% daquelas positivas para coliformes totais também o eram para esta bactéria. Atras de material em uso foram positivas quanto à ocorrência de coliformes totais. Tal como ocorreu a carne, o número mais possível (NMP) assumiu, em vários casos, elevados valores. Embora não comprovado estatisticamente, os resultados sugerem uma maior ocorrência desse grupo de microrganismos nas superfícies de madeira (mesa e ou cepo).
Resumo:
O experimento foi conduzido em vasos, nas condições de casa de vegetação da Escola Superior de Agricultura "Luiz de Queiroz", Estado de São Paulo, Brasil, no período de 1975/76. O objetivo foi verificar a influência de pulverizações foliares com NPK na composição de N, P, K nas folhas velhas e folhas novas do algodoeiro (Gossypium hirsutum L.) cv. IAC-13-1. O delineamento experimental foi inteiramente casualizado em esquema fatorial 2 x 3³, em três repetições; sendo dois números de pulverizações (4 e 8), três macronutrientes (N, P, K) em três dosagens (0, 1,2). Cada parcela foi constituída por um vaso com duas plantas. Os tratamentos utilizados constam da Tabela 1 . Os níveis com seus valores médios de N, P2O5 e K2O utilizados em 4 pulverizações: N0=0,N1=0,44,N2=0,84; P0=0, P1= 0,05, P2=0,09; K0=0,K1=0,33,K2=0,66, em 8 pulverizações, N0=0,N1=0,91,N2=1,87; P0=0,P1=0,10, P2=0,20; K0=0,K1=0,70, K2=1,40 em kg/ha, sendo fontes de nutrientes o NH4N0(3), NaH2P0(4)H(2)0 e KCl para N, P(2)0(5) e K(2)0 respectivamente. Os parâmetros empregados na avaliação dos tratamentos foram: teores de N, P, K em folhas velhas e novas do algodoeiro. Nas condições dos experimentos pode-se tirar as seguintes conclusões: A aplicação do efeito quadrático nos seus teores encontrados nas folhas novas apenas em 8 pulverizações, provocando aumento dos teores de P nas folhas velhas. Os algodoeiros não tratados com N revelaram maior teor de K na matéria seca das folhas velhas. O P causou diminuição dos teores de N nas folhas velhas e novas; aumentou os teores de P nas folhas velhas, quando em presença de N. O K aumentou o P nas folhas velhas e novas, diminuiu, porém, o seu teor nas folhas velhas.
Resumo:
O trabalho objetivou identificar as espécies de abelhas sem ferrão (Hymenoptera, Apidae, Apini, Meliponina) presentes em três áreas de cerrado no Maranhão, nordeste do Brasil, por meio do levantamento de seus ninhos. Também foi objetivo do trabalho identificar e caracterizar os substratos vegetais utilizados como locais de nidificação. Pretendeu-se averiguar a abundância e a distribuição espacial de ninhos, bem como padrões de uso dos substratos para nidificação. Foram encontrados 73 ninhos pertencentes a 15 espécies. As espécies mais abundantes foram Partamona chapadicola Pedro & Camargo, 2003 (34,25%) e Oxytrigona sp. 2 (20,55%). Identificaramse 11 espécies vegetais utilizadas para construção dos ninhos. O substrato de nidificação mais freqüente foi Qualea parviflora (Vochysiaceae), na qual encontrou-se 38,36% do total de ninhos (n=28), seguido por Salvertia convallariodora (Vochysiaceae) (n=17; 23,29%). O intervalo de confiança de 95% para o DAP situou-se entre 36,21 cm a 41,68 cm. Este intervalo representaria árvores mais velhas que teriam mais cavidades disponíveis para nidificação, o que poderia ser o caso de S. convallariodora e Q. parviflora. O padrão de dispersão dos substratos com ninhos mostrou-se aleatório nas áreas 1 e 2 e uniforme na área 3. Padrões de distribuição aleatórios seriam um indício da ausência de competição e padrões uniformes indicariam competição.
Resumo:
Estudou-se o efeito da dieta láctea, por um período de 150 dias em camundongos infectados com diferentes números das formas sangüíneas de Plasmodium berghei, e observou-se o desenvolvimento da imunidade humoral nestes animais pela dosagem das imunoglobulinas das classes IgG e IgM no soro, usando o teste de imunofluorescência indireta. Os resultados indicam que a administração do leite, como único alimento em camundongos, protege-os cotnra infecção malárica fatal, independentemente do número de parasitas inoculados. Os animais desenvolveram altos níveis de anticorpos IgG, os quais persistiram no soro por longo período de tempo. Contudo, os anticorpos IgM somente foram detectáveis no soro durante as primeiras duas semanas de infecção. O P. berghei continua presente na circulação periférica, após dois meses de infecção, uma vez que o sangue destes animasi inoculados em camundongos mantidos em dieta norma, produziu infecção fatal nos recipientes. No entanto, ao exame microscópico não foi possível detectar o parasita da malária no sangue periférico destes animais. O protozoário esteve presente no baço e fígado dos camundongos durante todo o tempo de duração da pesquisa. A presença contínua do P. berghei nestes animais, em nível de infecção subclínica, ofereceu ao hospedeiro o desenvolvimento de uma imunidade sólida contra subseqüente infecção. Esta imunidade adquirida esteve presente, nestes animais, até cinco meses após a infecção.
Resumo:
Idealizou-se uma técnica de marcação de insetos adultos, visando principalmente à identificação individual de triatomineos, que consiste na elaboração de códigos correspondentes a números, através de cinco cores basicas (vermelho, branco, azul, verde e amarelo) representadas por pintas coloridas feitas com tinta esmalte e depositadas do pronoto ao escutelo do inseto manualmente, com um fino pincel de seda. As pintas não devem se estender às asas sobrepostas, porque estas mudam constantemente de posição, encobrindo assim a marcação. A tinta é indelével e, por não apresentar toxicidade, não afeta a longevidade e o comportamento dos insetos. A técnica pode ser utilizada tanto para insetos no laboratório quanto no campo principalmente em trabalhos relacionados à Ecologia e ao Comportamento.
Resumo:
As adaptações por nós introduzidas no método de Baermann-Moraes-Coutinho proporcionaram maior operacionalidade, economia de material e de espaço físico, facilitando sua execução, principalmente nos trabalhos de campo. A sensibilidade do método adaptado, objetivando o encontro de larvas de Strongyloides stercoralis foi, em números relativos, 2,8% maior do que o método original e 6,5% do que o de Lutz
Resumo:
Este estudo teve como objetivo identificar as necessidades educativas dos idosos, de acordo com as suas percepções, elaborando uma proposta educativa. Os dados foram coletados de setembro de 96 a março de 97 e a amostra constituiu-se de 26 idosos diabéticos cadastrados na Associação dos Diabéticos de Uberaba - M.G. Utilizou-se a observação participante e a entrevista semi estruturada. Os dados foram analisados de acordo com os pressupostos dos temas geradores, segundo Paulo Freire. Os resultados mostraram que a Associação dos Diabéticos tem como objetivo a educação em saúde de seus freqüentadores. Emergiram quatro temas geradores: Diabetes mellitus tipo 2, Atenção nos serviços de saúde, Doenças associadas e O idoso diabético.