110 resultados para Fisheries in reservoirs
Resumo:
The aim of the current study was to describe the occurrence of the blaOXA-23 gene and the ISAba1 element in imipenem-susceptible Acinetobacter baumannii strains. By performing the polymerase chain reaction mapping using combinations of ISAba1 forward primers and the blaOXA-23-like gene reverse primers, we demonstrated that the ISAba1 element did not occur upstream of the blaOXA-23 gene in five of 31 isolates, which explained the lack of resistance to imipenem despite the presence of the blaOXA-23 gene. All of the blaOXA-23-positive isolates were susceptible to imipenem and meropenem with minimal inhibitory concentration < 4 µg/mL. Pulsed-field gel electrophoresis analysis revealed four genotypes among the five blaOXA-23-positive isolates. The current report of the blaOXA-23 gene in imipenem-susceptible isolates provided evidence that this gene may be silently spread in a hospital environment and highlighted the threat of undetected reservoirs of carbapenemase genes.
Resumo:
The aim of this study was to characterize two metallo-β-lactamases (MBLs)-producing Pseudomonas aeruginosa clinical isolates showing meropenem susceptibility. Antimicrobial susceptibility was assessed by automated testing and Clinical and Laboratory Standards Institute agar dilution method. MBL production was investigated by phenotypic tests. Molecular typing was determined by pulsed field gel electrophoresis (PFGE). MBL-encoding genes, as well as their genetic context, were identified by polymerase chain reaction (PCR) and sequencing. The location of blaIMP-16 was determined by plasmid electrophoresis, Southern blot and hybridization. Transcriptional levels of blaIMP-16, mexB, mexD, mexF, mexY, ampC and oprD were determined by semi-quantitative real time PCR. The P. aeruginosa isolates studied, Pa30 and Pa43, showed imipenem and meropenem susceptibility by automated testing. Agar dilution assays confirmed meropenem susceptibility whereas both isolates showed low level of imipenem resistance. Pa30 and Pa43 were phenotypically detected as MBL producers. PFGE revealed their clonal relatedness. blaIMP-16 was identified in both isolates, carried as a single cassette in a class 1 integron that was embedded in a plasmid of about 60-Kb. Pa30 and Pa43 overexpressed MexAB-OprM, MexCD-OprJ and MexXY-OprM efflux systems and showed basal transcriptional levels of ampC and oprD. MBL-producing P. aeruginosa that are not resistant to meropenem may represent a risk for therapeutic failure and act as silent reservoirs of MBL-encoding genes.
Resumo:
Leptospirosis is the most widespread zoonosis in the world and significant efforts have been made to determine and classify pathogenic Leptospira strains. This zoonosis is maintained in nature through chronic renal infections of carrier animals, with rodents and other small mammals serving as the most important reservoirs. Additionally, domestic animals, such as livestock and dogs, are significant sources of human infection. In this study, a multiple-locus variable-number tandem repeat analysis (MLVA) was applied to genotype 22 pathogenic Leptospira strains isolated from urban and periurban rodent populations from different regions of Argentina. Three MLVA profiles were identified in strains belonging to the species Leptospira interrogans (serovars Icterohaemorrhagiae and Canicola); one profile was observed in serovar Icterohaemorrhagiae and two MLVA profiles were observed in isolates of serovars Canicola and Portlandvere. All strains belonging to Leptospira borgpetersenii serovar Castellonis exhibited the same MLVA profile. Four different genotypes were isolated from urban populations of rodents, including both mice and rats and two different genotypes were isolated from periurban populations.
Resumo:
Cutaneous leishmaniasis (CL) is a neglected clinical form of public health importance that is quite prevalent in the northern and eastern parts of Egypt. A comprehensive study over seven years (January 2005-December 2011) was conducted to track CL transmission with respect to both sandfly vectors and animal reservoirs. The study identified six sandfly species collected from different districts in North Sinai: Phlebotomus papatasi, Phlebotomus kazeruni, Phlebotomus sergenti, Phlebotomus alexandri, Sergentomyia antennata and Sergentomyia clydei. Leishmania (-)-like flagellates were identified in 15 P. papatasi individuals (0.5% of 3,008 dissected females). Rodent populations were sampled in the same districts where sandflies were collected and eight species were identified: Rattus norvegicus (n = 39), Rattus rattus frugivorous (n = 13), Rattus rattus alexandrinus (n = 4), Gerbillus pyramidum floweri (n = 38), Gerbillus andersoni (n = 28), Mus musculus (n = 5), Meriones sacramenti (n = 22) and Meriones crassus (n = 10). Thirty-two rodents were found to be positive for Leishmania infection (20.12% of 159 examined rodents). Only Leishmania major was isolated and identified in 100% of the parasite samples. The diversity of both the vector and rodent populations was examined using diversity indices and clustering approaches.
Resumo:
Rhodnius prolixus, a blood-sucking triatomine with domiciliary anthropophilic habits, is the main vector of Chagas disease. The current paradigm of Trypanosoma cruzi transmission in Columbia includes a sylvatic and domiciliary cycle co-existing with domestic and sylvatic populations of reservoirs. The aim of this study is to evaluate the population densities and relative abundance of triatomines and mammals that may be involved in the sylvatic cycle of Chagas disease to clarify the epidemiological scenario in an endemic area in the province of Casanare. Insect vectors on Attalea butyracea palms were captured using both manual searches and bait traps. The capture of mammals was performed using Sherman and Tomahawk traps. We report an infestation index of 88.5% in 148 palms and an index of T. cruzi natural infection of 60.2% in 269 dissected insects and 11.9% in 160 captured mammals. High population densities of triatomines were observed in the sylvatic environment and there was a high relative abundance of reservoirs in the area, suggesting a stable enzootic cycle. We found no evidence of insect domiciliation. Taken together, these observations suggest that eco-epidemiological factors shape the transmission dynamics of T. cruzi, creating diverse scenarios of disease transmission.
Resumo:
Trypanosoma cruziis the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruziI (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.
Resumo:
Here, we present a review of the dataset resulting from the 11-years follow-up of Trypanosoma cruziinfection in free-ranging populations of Leontopithecus rosalia(golden lion tamarin) andLeontopithecus chrysomelas(golden-headed lion tamarin) from distinct forest fragments in Atlantic Coastal Rainforest. Additionally, we present new data regarding T. cruziinfection of small mammals (rodents and marsupials) that live in the same areas as golden lion tamarins and characterisation at discrete typing unit (DTU) level of 77 of these isolates. DTU TcII was found to exclusively infect primates, while TcI infectedDidelphis aurita and lion tamarins. The majority ofT. cruziisolates derived from L. rosaliawere shown to be TcII (33 out 42) Nine T. cruziisolates displayed a TcI profile. Golden-headed lion tamarins demonstrated to be excellent reservoirs of TcII, as 24 of 26 T. cruziisolates exhibited the TcII profile. We concluded the following: (i) the transmission cycle of T. cruziin a same host species and forest fragment is modified over time, (ii) the infectivity competence of the golden lion tamarin population fluctuates in waves that peak every other year and (iii) both golden and golden-headed lion tamarins are able to maintain long-lasting infections by TcII and TcI.
Resumo:
Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomaticPlasmodium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless infection. The antiparasitic immune response can result in reducedPlasmodium sp. load with control of disease manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play major roles in asymptomatic Plasmodiuminfection; T regulatory cell activity (through the production of interleukin-10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential biomarkers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with well-designed malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection.
Resumo:
Dogs play a major role in the domestic cycle of Trypanosoma cruzi, acting as reservoirs. In a previous work we have developed a model of vaccination of dogs in captivity with nonpathogenic Trypanosoma rangeli epimastigotes, resulting in the production of protective antibodies against T. cruzi, with dramatic decrease of parasitaemia upon challenge with 100,000 virulent forms of this parasite. The aim of this work was to evaluate the immunogenicity of this vaccine in dogs living in a rural area. Domestic dogs, free from T. cruziinfection, received three immunisations with fixed T. rangeliepimastigotes. Dogs were not challenged with T. cruzi, but they were left in their environment. This immunisation induced antibodies againstT. cruzi for more than three years in dogs in their natural habitat, while control dogs remained serologically negative.
Resumo:
Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade) is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV) and Potato virus Y (PVY) and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara), sweet pepper (Capsicum annuum cv. Magda), Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.
Resumo:
The siltation is a natural process, but can be accelerated by human actions and results in major problems for the reservoirs, reducing its useful volume for irrigation. An example of this problem was the reduction of the area of mirror water of Fernandópolis municipal dam in 48.3% during 20 years. Therefore, this study aimed to evaluate the production of sediments and siltation of Fernandópolis municipal dam from a methodology that can be applied to small earth dams for agricultural purposes. For this, it was monitored, monthly throughout the year, the volume of sediment deposited in the reservoir. The percentage of retention sediment in Fernandópolis municipal dam ranged from 53.9 to 94.5%, that associated with a high specific sediment yield, will cause its full silting in at most 57 years. It is recommended to minimize this process the restoration of permanent preservation areas and the removal of 17,500 m³ of sediment from the riverbed of the dam.
Resumo:
Heartworm disease is caused by the intravascular nematode Dirofilaria immitis, a pathogen of public health importance usually associated to domestic dogs and cats, and to a lesser extend to other mammal species. The oncilla (Leopardus tigrinus) is a threatened neotropic felid species that naturally occurs in Brazil. Here, we report the encounter of adult and larval stages of heartworms in a female specimen of L. tigrinus, probable of free-ranging origin, from Ubatuba, São Paulo, Brazil, which died showing clinical signals compatible with heartworm disease. This was the first reported case of D. immitis infection and associated disease in L. tigrinus, also suggesting that the oncilla acted as a definitive host for this parasite. The present findings confirmed D. immitis as a pathogenic agent for this felid species, thus supporting the recommendation for the inclusion of diagnostic testing for this pathogen in routine health screening procedures for captive and free-ranging oncillas in Brazil, especially in those localities where climate conditions support the occurrence of the parasite. Potential reservoirs as oncillas are established beyond the reach of veterinary care, thus representing a continuing risk for domestic animals and humans acquiring heartworm infection. We encourage further serologic and molecular studies aiming to establish D. immitis prevalences in L. tigrinus and other wild carnivores in the region of Ubatuba, as well as ecological and veterinary studies to access the role of this pathogen for the survival of this threatened felid species.
Resumo:
The animal reservoirs of vancomycin-resistant enterococci (VRE) have important role in the epidemiology of the bacteria and resistant genes. The present work searched fecal samples taken off nonhuman primates for the presence of VRE. Resistance profiles, virulence traits, and genetic variability among enterococci isolates were also analyzed. The samples included Capuchin monkeys (Cebus apella, n=28) and Common marmoset (Callithrix penicillata, n=37) housed in the Primate Center of the University of Brasília, Brazil. Most individuals were captive monkeys from the Central-West and South-East regions of Brazil (n=48). We collected rectal swabs and carried out selective isolation followed by multiplex Polymerase Chain Reaction (PCR) to identify species and resistance genes. No vanA or vanB-containing enterococci were found. The carriage rates ranged from 1.5% for the VanC-type E. casseliflavus and E. gallinarum until 12.3% (n=8) for Enterococcus faecalis. All E. faecalis isolates showed susceptibility to vancomycin, teicoplanin, ampicillin, gentamicin, and streptomycin. The virulence genes ace and esp were prevalent (100.0%, 87.5%). Multilocus variable number of tandem repeats (MLVA) revealed diversity in the number of repeats among E. faecalis isolates and targets, which was higher for espC, efa5, and efa6. We identified six different MLVA genotypes that were divergent from those described in human beings. Also, they were clustered into two genogroups that showed host-specificity for the species Cebus apella or Callithrix penicillata. In conclusion, no vanA- or vanB-containing enterococci were found colonizing those primate individuals. This finding suggested that the primate individuals investigated in our study are not directly involved in the epidemiological chain of high-level vancomycin-resistant genes vanA or vanB in Brazil. Our study also showed that E. faecalis isolated from nonhuman primates carry virulence traits and have ability to spread their lineages among different individuals.
Resumo:
Neorickettsia risticii is the causative agent of Potomac Horse Fever, a severe febrile disease affecting horses, transmitted by trematodes species with a complex life cycle. A total of 30 insectivorous bats (Brazilian free-tailed bat Tadarida brasiliensis) were analyzed by PCR for presence of genus Anaplasma, Ehrlichia, Neorickettsia and Rickettsia. Three samples showed positive reactions for genus Anaplasma, Ehrlichia and Neorickettsia, and the sequences were 99.67% identical to Neorickettsia risticii. The role of bats in the life cycle of N. risticii has yet to be elucidated; however bats may be reservoirs for this bacterium. To our knowledge, this is the first evidence of N. risticii in Argentina.
Resumo:
AbstractPorcine teschovirus (PTV), porcine sapelovirus (PSV), and enterovirus G (EV-G) are infectious agents specific to pig host species that are endemically spread worldwide. This study aimed to investigate the natural infection by these porcine enteric picornaviruses in wild boars (Sus scrofa scrofa) of Paraná state, Brazil, and to evaluate peccaries (Pecari tajacu and Tayassu pecari) as alternative host species for these viruses. Fecal samples (n=36) from asymptomatic wild boars (n=22) with ages ranging from 2 to 7 months old (young, n=14) and 2 to 4 years old (adult, n=8) and from peccaries (6 to 8 months old, n=14) were collected from a farm and a zoo, respectively, both located in Paraná state. Reverse transcription-polymerase chain reaction (RT-PCR) and nested-PCR (n-PCR) assays targeting the 5'non-translated region of the virus genome were used for screening the viruses. Porcine enteric picornaviruses were detected in 12 out of the 22 wild boar fecal samples. According to each of the viruses, EV-G was most frequently (11/22, 50%) detected, followed by PTV (10/22, 45.5%) and PSV (4/22, 18.2%). Regarding the age groups, young wild boars were more frequently (9/14, 64.3%) infected with PTV, PSV, and EV-G than adult animals (3/8, 37.4%). One n-PCR amplified product for each of the viruses was submitted to sequencing analysis and the nucleotide sequences were compared with the related viruses, which showed similarities varying from 97.7% to 100% for PTV, 92.4% to 96.2% for PSV, and 87.1% to 100% for EV-G. Peccaries tested negative for the viruses and in this study they did not represent infection reservoirs. This study is the first to report the molecular detection of PTV, PSV, and EV-G from captive wild boars in a South American country and the first to screen peccaries as alternative host species for porcine enteric picornavirus.