162 resultados para Feeding behaviour
Resumo:
The flight initiation of T. infestans, the main vector of Chagas disease in the Southern Cone countries of Latin America, and of the closely-related species T. melanosoma was studied in laboratory. The results demonstrated that after the beginning of observations the peak of the flight activity was about 14 days after feeding in both species and it was usually more marked in the females than in the males, but there were no significant differences in the flight behaviour of the two species.
Resumo:
Once known some biological characteristics of six Trypanosoma cruzi strains, randomly amplified polymorphic DNA (RAPD) analysis was made. Cluster analysis by UPGMA (unweighted pair group method analysis) was then applied both to biological parameters and RAPD profiles. Inspection of the UPGMA phenograms indicates identical clusters, so supporting that usefulness of biological parameters to characterization of T. cruzi strains still remains.
Resumo:
The population biology of three populations of Panstrongylus megistus was compared to determine possible influence on the behaviour and epidemiological importance of this species. The results demonstrated differences in terms of egg eclosion time, nymphal mortality and development rates, and feeding and defaecation rates. These differences appeared to follow a geographical cline, primarily reflecting different degrees of adaptation to domestic habitats.
Resumo:
Deltamethrin-impregnated PVC dog collars were tested to assess if they were effective in protecting dogs from sand fly bites of Lutzomyia longipalpis and Lu. migonei. A protective effect against Old World species Phlebotomus perniciosus was demonstrated before. Four dogs wearing deltamethrin collars and three dogs wearing untreated collars (not impregnated with deltamethrin) were kept in separate kennels for over eight months in a village on the outskirts of Fortaleza in Ceará, Brazil. Periodically, a dog from each group was sedated, placed in a net cage for 2 h in which 150 female sand flies had been released 10-15 min before. Lu. longipalpis were used 4, 8, 12, 16, 22, 27, and 35 weeks after the attachment of the collars. Lu. migonei were used 3, 7, 11, 15, 22, 26, and 36 weeks after attachment. During 35 weeks, only 4.1% (81 of 2,022) Lu. longipalpis recovered from the nets with the deltamethrin collared dogs were engorged, an anti-feeding effect of 96%. Mortality initially was over 90% and at 35 weeks was 35% with half of the sand flies dying in the first 2 h. In contrast, 83% of the 2,094 Lu. longipalpis recovered from the nets containing the untreated collared dogs were engorged and the mortality ranged from zero to 18.8% on one occasion with 1.1% dying in the first 2 h. Similar findings were found with Lu. migonei: of 2,034 sand flies recovered over this period, only 70 were engorged, an anti-feeding effect of 96.5%, and mortality ranged from 91% initially to 46% at 36 weeks. In contrast, engorgement of controls ranged from 91 to71% and a mortality ranged from 3.5 to 29.8%. These studies show that deltamethrin impregnated collars can protect dogs against Brazilian sand flies for up to eight months. Thus, they should be useful in a program to control human and canine visceral leishmaniasis.
Resumo:
The response to intra- and interspecific faecal assembling signals was tested in Rhodnius prolixus. Papers impregnated with excrement of R. prolixus induced the aggregation of larvae of this species, but also of those of Triatoma infestans. However, faeces belonging to T. infestans were not able to assemble larvae of R. prolixus. On the other hand, there was no response of R. prolixus to putative chemical factors from their cuticle (footprints), in contrast to T. infestans. Results are discussed as related to the ecology of both species.
Resumo:
Data from the Chagas Disease Control Program indicate a growing domiciliary and peridomiciliary invasion of Triatoma rubrovaria in the State of Rio Grande do Sul, where it has become the most frequent triatomine species captured there since the control of T. infestans. Bionomic characteristics that could influence the vectorial capacity of T. rubrovaria as vector of Trypanosoma cruzi were evaluated: patterns of (i) feeding, (ii) defecation, and (iii) resistance to starvation, using insects fed on mice. Fifty three percent of the females showed a defecation pattern conducive to chagasic transmission, defecating either on or near the bite site. The averages of the resistance to starvation varied from 48.1 to 179 days, for the first and fifth nymphal stages, respectively. Our study shows that with respect to the patterns of feeding, defecation and resistance to fasting, T. rubrovaria presented similar rates to the ones observed for other effective vector species, such as T. infestans. Thus, based on our studies we conclude that T. rubrovaria has biological characteristics that can positively influence its capacity to become infected and transmit T. cruzi, and also to keep residual populations after chemical control interventions.
Resumo:
Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40) were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gravid female (F11/F38; F13/F40), embryonation rate (F13/F40), hatchability rate (F11/F38; F13/F40), egg width (F11/F38), wing length of females (F13/F40), and wing length and width of males (F11/F38) in the blood-feeding sub-colony were significantly greater than that in the autogenous sub-colony; and egg length (F11/F38) and width (F13/F40), and mean longevity of adult females (F11/F38) and males (F13/F40) in the blood-feeding sub-colony were significantly less than that in the autogenous sub-colony. The results of comparison on filarial susceptibility demonstrated that both sub-colonies yielded similar susceptibilities to Brugia malayi [blood-feeding/autogeny = 56.7% (F11)/53.3%(F38), 60%(F13)/83.3%(F40)] and Dirofilaria immitis [blood-feeding/autogeny = 85.7%(F11)/75%(F38), 45%(F13)/29.4%(F40)], suggesting autogenous Ae. togoi sub-colony was an efficient laboratory vector in study of filariasis.
Resumo:
The effect of urea on the oviposition behaviour of culicine vectors of Japanese encephalitis was studied in rice fields. Gravid females had a strong preference for oviposition in urea treated areas in rice fields, while no such preference was exhibited in untreated areas. The egg laying declined in the area where urea treated water surface had a mechanical barrier, which allowed volatile fractions to escape, but prevented contact with the water. Urea was shown to act as an oviposition attractant/stimulant for Culex tritaeniorhynchus, but its role was not clear for Cx. vishnui, as the number of egg rafts obtained for the latter species was low.
Resumo:
Aspects related to hatching, time-lapse between presenting the blood-meal and beginning of feeding, feeding time, postfeed defecation delay, mortality, and fecundity for each stage of Meccus longipennis life-cycle were evaluated. The bugs were maintained in a dark incubator at 27 ± 1ºC and 80 ± 5% rh, were fed weekly and checked daily for ecdysis or death. The hatching rate observed for 300 eggs was 76.7% and the average time of hatching was 19.8 days. Mean time-lapse between presentation of the blood meal and the beginning of feeding was under 5 min in nymphal stages and postfeed defecation delay was under 10 min in most stages, except in fourth and fifth stages. Mean feeding time was longer than 10 min in most stages, except in fourth stage. One hundred thirty-one nymphs (N) (65.5%) completed the cycle and the average time from NI to adult was 192.6 ± 34.8 days. The average span in days for each stage was 18.1 for NI, 21.4 for NII, 29.5 for NIII, 45.5 for NIV and 55.9 for NV. The number of bloodmeals at each nymphal stage varied from 1 to 5. The mortality rate was 3.29 for NI, 6.8 for NII, 2.92 for NIII 3.76 for NIV, and 10.16 for NV nymphs. The average number of eggs laid per female in a 9-month period was 615.6. Based on our results, we conclude that M. longipennis has some biological and behavioral characteristics which influence its capacity of becoming infected and transmitting Trypanosoma cruzi to human populations in those areas of Mexico where it is currently present.
Resumo:
Belminus herreri, originally described from specimens collected in Panama, was considered entirely silvatic until to 2000 when it was found for the first time in a domestic habitat in Colombia. In 2001, during a new search of houses in the Department of Cesar, Colombia, 121 specimens were collected. Study of their feeding sources using an ELISA test revealed that 96% of these specimens had fed on cockroaches (Blattidae). However, a small proportion of these B. herreri specimens also showed the presence of Trypanosoma cruzi in their gut contents, suggesting a possible role for these insects in the epidemiology of Chagas disease.
Resumo:
Precipitin tests were performed on blood meals of 199 sand flies (161 Lutzomyia umbratilis, 34 L. spathotrichia, two Lutzomyia of group shannoni, one L. anduzei) in a non-flooded upland forest on the Campus of the Universidade Federal do Amazonas. This is the second largest forest fragment in an urban setting in Brazil. Results on L. umbratilis, which is considered to be the principal leishmaniasis vector in this region, indicated rodents as its predominant blood source in contrast to previous reports in which blood meal analysis indicated that this species fed principally on Xenarthra (particularly sloths)
Resumo:
The aim of this study was to obtain experimental evidence that phlebotomine saliva is actually ingested during the carbohydrate ingestion phase (before and after blood digestion). The ingestion of carbohydrate was simulated as it occurs in the field by offering the insects balls of cotton soaked in sucrose, sucrose crystals or orange juice cells. The results obtained here showed that ingestion occurred under each condition investigated, as indicated by the presence of apyrase, an enzyme used as a marker to detect saliva in the insect gut and/or carbohydrate sources. Saliva ingestion by phlebotomine during the carbohydrate ingestion phase is important to explain how it could promote starch digestion and to trigger Leishmania promastigotes to follow a differentiation pathway as proposed previously by some authors.
Resumo:
A cohort initiated with 121 eggs, yielding 105 first instar nymphs (eclosion rate: 86.78%), allowed us to observe the entire life cycle of Triatoma ryckmani under laboratory conditions (24ºC and 62% relative humidity), by feeding them on anesthetized hamsters. It was possible to obtain 62 adults and the cycle from egg to adult took a mean of 359.69 days with a range of 176-529 days (mortality rate of nymphs: 40.95%). Mean life span of adults was of 81 days for females and 148 days for males. The developmental periods of 4th and 5th nymphs were longer than those of the other instars. This suggests that young siblings have a better chance of taking a hemolymph meal from older ones, in order to survive during fasting periods during prolonged absences of vertebrate hosts from natural ecotopes. The stomach contents of 37 insects showed blood from rodents (15 cases), lizards (7 cases), birds (6 cases) and insect hemolymph (7 cases). Out of 10 insects fed by xenodiagnosis on a Trypanosoma cruzi infected mouse, all but one became infected with the parasite.
Resumo:
The objective of this study was to evaluate the feeding behavior of Triatoma vitticeps through the identification of its food sources and the characterization of the blood ingestion process. In addition, we aimed to verify if the saliva of this vector interferes with the perception of the host during the feedings by creating a nervous impulse. Here, we demonstrated that the T. vitticeps saliva reduces, gradually and irreversibly, the amplitude of the compound action potential of the nervous fibre, which helps decrease the perception of the insect by the host. The precipitin reaction demonstrated the feeding eclecticism of this vector, with the identification of eight food sources - most of them found simultaneously in the same insect. The analysis of the electrical signals produced by the cibarial pump during meals demonstrated that the best feeding performance of T. vitticeps nymphs that fed on pigeons is mainly due to the higher contraction frequency of the pump. The longer contact period with the host to obtain a complete meal compared with other triatominae species of the same instar could favor the occurrence of multiple blood sources in T. vitticeps under natural conditions, as it was evidenced by the precipitin test.
Resumo:
Host use by vectors is important in understanding the transmission of zoonotic diseases, which can affect humans, wildlife and domestic animals. Here, a synthesis of host exploitation patterns by kissing-bugs, vectors of Chagas disease, is presented. For this synthesis, an extensive literature review restricted to feeding sources analysed by precipitin tests was conducted. Modern tools from community ecology and multivariate statistics were used to determine patterns of segregation in host use. Rather than innate preferences for host species, host use by kissing-bugs is influenced by the habitats they colonise. One of the major limitations of studies on kissing-bug foraging has been the exclusive focus on the dominant vector species. We propose that expanding foraging studies to consider the community of vectors will substantially increase the understanding of Chagas disease transmission ecology. Our results indicate that host accessibility is a major factor that shapes the blood-foraging patterns of kissing-bugs. Therefore, from an applied perspective, measures that are directed at disrupting the contact between humans and kissing-bugs, such as housing improvement, are among the most desirable strategies for Chagas disease control.