97 resultados para Essential Tremor
Resumo:
Four formulations of Italian salami type were produced: without antioxidants; with essential oil of coriander essential oil (0.01%); with BHT (0.01%); and with Coriander essential oil and BHT (0.005 and 0.005%). The antioxidant activity of salamis was evaluated by the lipid oxidation, through the techniques of peroxide number and TBARS. The salami with the coriander essential oil exhibited reduction in lipid oxidation by increasing the shelf life of the product. The salami with the coriander essential oil and BHT showed no synergism between the antioxidants. The salami using BHT presented less antioxidant activity than that of the salami using coriander essential oil.
Resumo:
Different concentrations of basil essential oil (Ocimum basilicum L.) (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1) were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1) were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant); control (using sodium eritorbate as antioxidant); and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control) and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.
Resumo:
Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC) of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time), Cymbopogon citratus (lemongrass) and Laurus nobilis (bay) were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.
Resumo:
Several studies have shown the antimicrobial and antioxidant properties of turmeric (Curcuma longa), widely used in food industry as a colorant, among other functions. The aim of this study was to determine the antioxidant and antimicrobial properties of turmeric essential oil against pathogenic bacteria and to study the influence of the addition of ascorbic acid on the prevention of polyphenols oxidation. The commercial turmeric essential oil alone did not show bactericidal activity against the microorganisms studied, Listeria monocytogenes and Salmonella typhimurium, but when combined with ascorbic acid, it showed significant antibacterial activity. The highest antimicrobial activity of turmeric essential oil against Salmonella typhimurium was 15.0 ± 1.41 mm at the concentration of 2.30 mg.mL-1 of essential oil and 2.0 mg.mL-1 of ascorbic acid. With regard to Listeria monocytogenes, the largest zone of inhibition (13.7 ± 0.58 mm) was obtained at the same concentrations. The essential oil showed antioxidant activity of EC50 = 2094.172 µg.mL-1 for the DPPH radical scavenging method and 29% under the concentration of 1.667 mg.mL-1 for the β-carotene bleaching method.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%), inlet air temperature (135-195 ºC), and feed flow rate (0.5-1.0 L.h-1) on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%), low inlet air temperature (135 ºC), and moderate feed flow rate (0.7 L.h-1) are the best spray drying conditions.
Resumo:
Abstract Essential oils (EO) of eucalyptus (Eucalyptus globulus L.), thymus (Thymus capitatus L.) pirul (Schinus molle L.) were evaluated for their efficacy to control Aspergillus parasiticus and Fusarium moniliforme growth and their ability to produce mycotoxins. Data from kinetics radial growth was used to obtain the half maximal inhibitory concentration (IC50). The IC50 was used to evaluate spore germination kinetic and mycotoxin production. Also, spore viability was evaluated by the MTT assay. All EO had an effect on the radial growth of both species. After 96 h of incubation, thymus EO at concentrations of 1000 and 2500 µL L–1 totally inhibited the growth of F. moniliforme and A. parasiticus, respectively. Eucalyptus and thymus EO significantly reduced spore germination of A. parasiticus. Inhibition of spore germination of F. moniliforme was 84.6, 34.0, and 30.6% when exposed to eucalyptus, pirul, and thymus EO, respectively. Thymus and eucalyptus EO reduced aflatoxin (4%) and fumonisin (31%) production, respectively. Spore viability was affected when oils concentration increased, being the thymus EO the one that reduced proliferation of both fungi. Our findings suggest that EO affect F. moniliforme and A. parasiticus development and mycotoxin production.