154 resultados para Environmental indicator
Resumo:
ABSTRACT The Brazilian Atlantic Forest is one of the world's biodiversity hotspots, and is currently highly fragmented and disturbed due to human activities. Variation in environmental conditions in the Atlantic Forest can influence the distribution of species, which may show associations with some environmental features. Dung beetles (Coleoptera: Scarabaeinae) are insects that act in nutrient cycling via organic matter decomposition and have been used for monitoring environmental changes. The aim of this study is to identify associations between the spatial distribution of dung beetle species and Atlantic Forest structure. The spatial distribution of some dung beetle species was associated with structural forest features. The number of species among the sampling sites ranged widely, and few species were found in all remnant areas. Principal coordinates analysis indicated that species composition, abundance and biomass showed a spatially structured distribution, and these results were corroborated by permutational multivariate analysis of variance. The indicator value index and redundancy analysis showed an association of several dung beetle species with some explanatory environmental variables related to Atlantic Forest structure. This work demonstrated the existence of a spatially structured distribution of dung beetles, with significant associations between several species and forest structure in Atlantic Forest remnants from Southern Brazil.
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.
Resumo:
In the region of the Serra do Espinhaço Meridional, peat bog is formed in hydromorphic environments developed in sunken areas on the plain surfaces with vegetation adapted to hydromorphic conditions, favoring the accumulation and preservation of organic matter. This pedoenvironment is developed on the regionally predominant quartzite rocks. Peat bog in the Environmental Protection Area - APA Pau-de-Fruta, located in the watershed of Córrego das Pedras, Diamantina,Brazil, was mapped and three representative profiles were morphologically characterized and sampled for physical, chemical and microbiological analyses. The organic matter was fractionated into fulvic acid (FA), humic acids (HA) and humin (H). Two profiles were sampled to determine the radiocarbon age and δ13C. The structural organization of the three profiles is homogeneous. The first two layers consist of fibric, the two subsequent of hemic and the four deepest of sapric peat, showing that organic matter decomposition advances with depth and that the influence of mineral materials in deeper layers is greater. Physical properties were homogeneous in the profiles, but varied in the sampled layers. Chemical properties were similar in the layers, but the Ca content, sum of bases and base saturation differed between profiles. Contents of H predominated in the more soluble organic matter fractions and were accumulated at a higher rate in the surface and deeper layers, while HA levels were higher in the intermediate and FA in the deeper layers. Microbial activity did not vary among profiles and was highest in the surface layers, decreasing with depth. From the results of radiocarbon dating and isotope analysis, it was inferred that bog formation began about 20 thousand years ago and that the vegetation of the area had not changed significantly since then.
Resumo:
This study proposes a method of direct and simultaneous determination of the amount of Ca2+ and Mg2+ present in soil extracts using a Calcium Ion-Selective Electrode and by Complexometric Titration (ISE-CT). The results were compared to those obtained by conventional analytical techniques of Complexometric Titration (CT) and Flame Atomic Absorption Spectrometry (FAAS). There were no significant differences in the determination of Ca2+ and Mg2+ in comparison with CT and FAAS, at a 95 % confidence level. Additionally, results of this method were more precise and accurate than of the Interlaboratorial Control (IC).
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
Preharvest burning is widely used in Brazil for sugarcane cropping. However, due to environmental restrictions, harvest without burning is becoming the predominant option. Consequently, changes in the microbial community are expected from crop residue accumulation on the soil surface, as well as alterations in soil metabolic diversity as of the first harvest. Because biological properties respond quickly and can be used to monitor environmental changes, we evaluated soil metabolic diversity and bacterial community structure after the first harvest under sugarcane management without burning compared to management with preharvest burning. Soil samples were collected under three sugarcane varieties (SP813250, SP801842 and RB72454) and two harvest management systems (without and with preharvest burning). Microbial biomass C (MBC), carbon (C) substrate utilization profiles, bacterial community structure (based on profiles of 16S rRNA gene amplicons), and soil chemical properties were determined. MBC was not different among the treatments. C-substrate utilization and metabolic diversity were lower in soil without burning, except for the evenness index of C-substrate utilization. Soil samples under the variety SP801842 showed the greatest changes in substrate utilization and metabolic diversity, but showed no differences in bacterial community structure, regardless of the harvest management system. In conclusion, combined analysis of soil chemical and microbiological data can detect early changes in microbial metabolic capacity and diversity, with lower values in management without burning. However, after the first harvest, there were no changes in the soil bacterial community structure detected by PCR-DGGE under the sugarcane variety SP801842. Therefore, the metabolic profile is a more sensitive indicator of early changes in the soil microbial community caused by the harvest management system.
Resumo:
The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.
Resumo:
The State of Santa Catarina, Brazil, has agricultural and livestock activities, such as pig farming, that are responsible for adding large amounts of phosphorus (P) to soils. However, a method is required to evaluate the environmental risk of these high soil P levels. One possible method for evaluating the environmental risk of P fertilization, whether organic or mineral, is to establish threshold levels of soil available P, measured by Mehlich-1 extractions, below which there is not a high risk of P transfer from the soil to surface waters. However, the Mehlich-1 extractant is sensitive to soil clay content, and that factor should be considered when establishing such P-thresholds. The objective of this study was to determine P-thresholds using the Mehlich-1 extractant for soils with different clay contents in the State of Santa Catarina, Brazil. Soil from the B-horizon of an Oxisol with 800 g kg-1 clay was mixed with different amounts of sand to prepare artificial soils with 200, 400, 600, and 800 g kg-1 clay. The artificial soils were incubated for 30 days with moisture content at 80 % of field capacity to stabilize their physicochemical properties, followed by additional incubation for 30 days after liming to raise the pH(H2O) to 6.0. Soil P sorption curves were produced, and the maximum sorption (Pmax) was determined using the Langmuir model for each soil texture evaluated. Based on the Pmax values, seven rates of P were added to four replicates of each soil, and incubated for 20 days more. Following incubation, available P contents (P-Mehlich-1) and P dissolved in the soil solution (P-water) were determined. A change-point value (the P-Mehlich-1 value above which P-water starts increasing sharply) was calculated through the use of segmented equations. The maximum level of P that a soil might safely adsorb (P-threshold) was defined as 80 % of the change-point value to maintain a margin for environmental safety. The P-threshold value, in mg dm-3, was dependent on the soil clay content according to the model P-threshold = 40 + Clay, where the soil clay content is expressed as a percentage. The model was tested in 82 diverse soil samples from the State of Santa Catarina and was able to distinguish samples with high and low environmental risk.
Resumo:
The yearly genetic progress obtained by breeding for increased soybean yield has been considered acceptable worldwide. It is common sense, however, that this progress can be improved further if refined breeding techniques, developed from the knowledge of the genetic mechanisms controlling soybean yield, are used. In this paper, data from four cultivars and/or lines and their derived sets of F2, F3, F7, F8, F9 and F10 generations assayed in 17 environments were analyzed to allow an insight of the genetic control of soybean yield under different environmental conditions. The general picture was of a complex polygene system controlling yield in soybeans. Additive genetic effects predominated although dominance was often found to be significant. Complications such as epistasis, linkage and macro and micro genotype x environment (G x E) interactions were also commonly detected. The overall heritability was 0.29. The relative magnitude of the additive effects and the complicating factors allowed the inference that the latter are not a serious problem to the breeder. The low heritability values and the considerable magnitude of G x E interactions for yield, however, indicated that careful evaluation through experiments designed to allow for the presence of these effects is necessary for successful selection.
Resumo:
Photosynthetic responses to daily environmental changes were studied in bean (Phaseolus vulgaris L.) genotypes 'Carioca', 'Ouro Negro', and Guarumbé. Light response curves of CO2 assimilation and stomatal conductance (g s) were also evaluated under controlled (optimum) environmental condition. Under this condition, CO2 assimilation of 'Carioca' was not saturated at 2,000 µmol m-2 s-1, whereas Guarumbé and 'Ouro Negro' exhibited different levels of light saturation. All genotypes showed dynamic photoinhibition and reversible increase in the minimum chlorophyll fluorescence yield under natural condition, as well as lower photosynthetic capacity when compared with optimum environmental condition. Since differences in g s were not observed between natural and controlled conditions for Guarumbé and 'Ouro Negro', the lower photosynthetic capacity of these genotypes under natural condition seems to be caused by high temperature effects on biochemical reactions, as suggested by increased alternative electron sinks. The highest g s values of 'Carioca' were observed at controlled condition, providing evidences that reduction of photosynthetic capacity at natural condition was due to low g s in addition to the high temperature effects on the photosynthetic apparatus. 'Carioca' exhibited the highest photosynthetic rates under optimum environmental condition, and was more affected by daily changes of air temperature and leaf-to-air vapor pressure difference.
Resumo:
The aim of this study was to characterize gas exchange responses of young cashew plants to varying photosynthetic photon flux density (PPFD), temperature, vapor-pressure deficit (VPD), and intercellular CO2 concentration (Ci), under controlled conditions. Daily courses of gas exchange and chlorophyll a fluorescence parameters were measured under natural conditions. Maximum CO2 assimilation rates, under optimal controlled conditions, were about 13 mmol m-2 s-1 , with light saturation around 1,000 mmol m-2 s-1. Leaf temperatures between 25ºC and 35ºC were optimal for photosynthesis. Stomata showed sensitivity to CO2, and a closing response with increasing Ci. Increasing VPD had a small effect on CO2 assimilation rates, with a small decrease above 2.5 kPa. Stomata, however, were strongly affected by VPD, exhibiting gradual closure above 1.5 kPa. The reduced stomatal conductances at high VPD were efficient in restricting water losses by transpiration, demonstrating the species adaptability to dry environments. Under natural irradiance, CO2 assimilation rates were saturated in early morning, following thereafter the PPFD changes. Transient Fv/Fm decreases were registered around 11h, indicating the occurrence of photoinhibition. Decreases of excitation capture efficiency, decreases of effective quantum yield of photosystem II, and increases in non-photochemical quenching were consistent with the occurrence of photoprotection under excessive irradiance levels.
Resumo:
The objective of this work was to determine genetic and environmental effects on beta-conglycinin and glycinin content in Brazilian soybean cultivars. The concentrations of these protein fractions were analyzed by scanning densitometry after electrophoresis, in 90 Brazilian soybean cultivars sown in Ponta Grossa, PR, in 2001. The effects of the sowing location were determined in the cultivar MG/BR 46 (Conquista), sown in 16 locations of Goiás and Minas Gerais states (Central Brazil), and in the cultivar IAS 5, sown in 12 locations of Paraná and São Paulo states (Southern Brazil), in 2002 soybean season. A significant variability for beta-conglycinin (7S) and glycinin (11S) protein fractions ratio was observed among the 90 Brazilian soybean cultivars. 'MS/BRS 169' (Bacuri) and 'BR-8' (Pelotas) presented the highest and the lowest 11S/7S ratios (2.76 and 1.17, respectively). Beta-conglycinin protein fractions presented more variability than glycinin protein fractions. Grouping test classified 7S proteins in seven groups, 11S proteins in four groups, and protein fraction ratios (11S/7S) in nine groups. Significant effect of sowing locations was also observed on protein fractions contents. There is a good possibility of breeding for individual protein fractions, and their subunits, without affecting protein content.
Resumo:
The objectives of this work were to evaluate the richness and diversity of the Poduromorpha fauna in two biotopes in Restinga de Maricá, RJ, Brazil, to identify the characteristic species of each biotope and to determine the relationships between the community structure and the abiotic environmental parameters. Representatives of the Poduromorpha (Collembola) order were studied under an ecological viewpoint in halophyte-psammophyte vegetation and foredune zone in preserved areas of Restinga de Maricá, a sand dune environment in the state of Rio de Janeiro, Brazil. The foredune zone showed the highest diversity, richness and equitability of springtail species. Differences in the fundamental, accessory and accidental species in each environment were encountered. Paraxenylla piloua was found to be an indicator species of the halophyte-psammophyte vegetation, while Friesea reducta, Pseudachorutes difficilis and Xenylla maritima were indicators of the foredune zone. The canonical correspondence analysis indicated pH, organic matter content and soil humidity as the most important factors influencing the spatiotemporal distribution of the species.
Resumo:
The objectives of this work were to caracterize the tropical maize germplasm and to compare the combining abilities of maize grain yield under different levels of environmental stress. A diallel was performed among tropical maize cultivars with wide adaptability, whose hybrid combinations were evaluated in two sowing dates, in two years. The significance of the environmental effect emphasized the environmental contrasts. Based on grain yield, the environments were classified as favorable (8,331 kg ha-1), low stress (6,637 kg ha-1), high stress (5,495 kg ha-1), and intense stress (2,443 kg ha-1). None of the genetic effects were significant in favorable and intense stress environments, indicating that there was low germplasm variability under these conditions. In low and high stresses, the specific combining ability effects (SCA) were significant, showing that the nonadditive genetic effects were the most important, and that it is possible to select parent pairs with breeding potential. SCA and grain yield showed significant correlations only between the closer environment pairs like favorable/low stress and high/intense stress. The genetic control of grain yield differed under contrasting stress environments for which maize cultivars with wide adaptability are not adequate.