97 resultados para Energy Performance of Buildings
Resumo:
Advanced cardiac life support (ACLS) is a problem-based course that employs simulation techniques to teach the standard management techniques of cardiovascular emergencies. Its structure is periodically revised according to new versions of the American Heart Association guidelines. Since it was introduced in Brazil in 1996, the ACLS has been through two conceptual and structural changes. Detailed documented reports on the effect of these changes on student performance are limited. The objective of the present study was to evaluate the effect of conceptual and structural changes of the course on student ACLS performance at a Brazilian training center. This was a retrospective study of 3266 students divided into two groups according to the teaching model: Model 1 (N = 1181; 1999-2003) and Model 2 (N = 2085; 2003-2007). Model 2 increased practical skill activities to 75% of the total versus 60% in Model 1. Furthermore, the teaching material provided to the students before the course was more objective than that used for Model 1. Scores greater than 85% in the theoretical evaluation and approval in the evaluation of practice by the instructor were considered to be a positive outcome. Multiple logistic regression was used to adjust for potential confounders (specialty, residency, study time, opportunity to enhance practical skills during the course and location where the course was given). Compared to Model 1, Model 2 presented odds ratios (OR) indicating better performance in the theoretical (OR = 1.34; 95%CI = 1.10-1.64), practical (OR = 1.19; 95%CI = 0.90-1.57), and combined (OR = 1.38; 95%CI = 1.13-1.68) outcomes. Increasing the time devoted to practical skills did not improve the performance of ACLS students.
Resumo:
There is evidence that the left hemisphere is more competent for motor control than the right hemisphere. This study investigated whether this hemispheric asymmetry is expressed in the latency/duration of sequential responses performed by the left and/or right hands. Thirty-two right-handed young adults (16 males, 16 females; 18-25 years old) were tested in a simple or choice reaction time task. They responded to a left and/or right visual target by moving their left and/or right middle fingers between two keys on each side of the midline. Right hand reaction time did not differ from left hand reaction time. Submovement times were longer for the right hand than the left hand when the response was bilateral. Pause times were shorter for the right hand than the left hand, both when the responses were unilateral or bilateral. Reaction time results indicate that the putatively more efficient response preparation by the left hemisphere motor mechanisms is not expressed behaviorally. Submovement time and pause time results indicate that the putatively more efficient response execution by the left hemisphere motor mechanisms is expressed behaviorally. In the case of the submovements, the less efficient motor control of the left hand would be compensated by a more intense attention to this hand.
Resumo:
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.
Resumo:
Ultrafiltration (UF) inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU) and pilot unit (PU). The membranes studied were polyethersulfone 150 kDa (UP150), polyvinylidene fluoride 150 kDa (UV150) and cellulose 30 kDa (UC030). The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU) resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.
Resumo:
Several mechanisms have been used to promote rapid germination of citrus seeds and uniform seedling emergence. We evaluated the effects of osmotic priming on the physiological performance of Rangpur lime seeds (Citrus limonia Osbeck). Seeds were treated with 30 g of Captan and 10 g of Tecto 600 in 20-litre batches and stored, without drying, at 10 ºC and 50% relative humidity for periods of 3, 6 and 9 months. After each period, seeds were primed at 25 ºC, in the light, by immersion in Poliethylenoglicol (PEG 6000), potassium nitrate (KNO3) and 70% PEG 6000 plus 30% KNO3, all at an osmotic potential of -1.1MPa, for priming periods of 3, 6, 9 and 12 days. Percentage germination, tray emergence and the emergence rate index (ERI) were evaluated. Priming in PEG 6000 solution, independent of priming period, or in KNO3 or PEG 6000 plus KNO3 for up to 9 days, were efficient at improving the physiological performance of seeds stored for up to 3 months. Osmotic priming appears to be a promising technique for improving the physiological quality of Rangpur lemon seeds.
Resumo:
The main objective of seed coating technology using polymers is to improve the physical, physiological and sanitary characteristics of seed performance. The objectives of the present study were to determine: the plantability of corn seeds treated with insecticide, fungicide and graphite, covered with a film coating; the dust retention on treated corn seeds; and the leaching of applied products on corn seeds covered by a film coating. Seed plantability was determined by counting the skips and double seeds; dust was determined by using fiberglass paper in mg.100 g-1 of seeds; and the leaching was determined by collecting the material leached in a 10 cm layer of sand after irrigation. The following conclusions were made: seeds covered with film coating effectively reduce skips and double seeds; film coating effectively reduces the formation of dust from the seeds; film coated seeds minimize the leaching of the insecticide applied in seed treatment; and there are differences in effectiveness related to film coating type and dosage.
Resumo:
The objective of this study was to evaluate the performance of seeds of two cultivars of lowland rice (Oryza sativa L.), coated with dolomitic limestone and aluminum silicate. It was used a completely randomized experimental design, with the treatments arranged in a 4 X 2 factorial scheme [4 treatments: dolomitic limestone; dolomitic limestone + aluminum silicate; aluminum silicate, at the dosages of 50 g/100 kg of seeds; and control (without the products) X 2 cultivars: IRGA424 and IRGA 422 CL], totaling eight treatments with four replications each. The variables analyzed were: fresh and dry weights of aerial biomass; plant height; leaf area at 10, 20, and 30 days after emergence (DAE). The physiological quality of seeds was also assessed using tests of: seed emergence; first count of germination; emergence speed index; and field emergence. It was concluded that the coating of rice seeds with dolomitic limestone and aluminum silicate does not affect seed germination and field seedling emergence. Aluminum silicate used via seed coating on cultivar IRGA 424 promoted greater leaf area, after 20 DAE. The dolomitic limestone and the aluminum silicate used via seed coating generated plants with larger dry biomass, after 20 DAE, for the cultivar IRGA 422 CL.