107 resultados para Dihydrolipoamide dehydrogenase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group) consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v) ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase) from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption) was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol dependence poses a serious medical and sociological problem. It is influenced by multiple environmental and genetic factors, which may determine differences in alcohol metabolism. Genetic polymorphism of the enzymes involved in alcohol metabolism is highly ethnically and race dependent. The purpose of this study was to investigate the differences, if present, in the allele and genotype frequency of alcohol dehydrogenase 1B (ADH1B), ADH1C and the microsomal ethanol-oxidizing system (MEOS/CYP2E1) between alcohol-dependent individuals and controls and also to determine if these genotypes cause a difference in the age at which the patients become alcohol dependent. The allele and genotype frequencies of ADH1B, ADH1C, and CYP2E1 were determined in 204 alcohol dependent men and 172 healthy volunteers who do not drink alcohol (control group). Genotyping was performed by PCR-RFLP methods on white cell DNA. ADH1B*1 (99.3%) and ADH1C*1 (62.5%) alleles and ADH1B*1/*1 (N = 201) and ADH1C*1/*1 (N = 85) genotypes were statistically more frequent among alcohol-dependent subjects than among controls (99.3 and 62.5%, N = 201 and 85 vs 94.5 and 40.7%, N = 153 and 32, respectively). Differences in the CYP2E1 allele and genotype distribution between groups were not significant. The persons with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes became alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes (28.08, 25.67 years vs 36.0, 45.05, 34.45 years, respectively). In the Polish men examined, ADH1C*1 and ADH1B*1 alleles and ADH1C*1/*1 and ADH1B*1/*1 genotypes favor alcohol dependence. The ADH1B*2 allele may protect from alcohol dependence. However, subjects with ADH1C*1/*1 and CYP2E1*c1/*c2 genotypes become alcohol dependent at a considerably younger age than the subjects with ADH1C*1/*2, ADH1C*2/*2 and CYP2E1*c1/*c1 genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agmatine has neuroprotective effects on retinal ganglion cells (RGCs) as well as cortical and spinal neurons. It protects RGCs from oxidative stress even when it is not present at the time of injury. As agmatine has high affinity for various cellular receptors, we assessed protective mechanisms of agmatine using transformed RGCs (RGC-5 cell line). Differentiated RGC-5 cells were pretreated with 100 μM agmatine and consecutively exposed to 1.0 mM hydrogen peroxide (H2O2). Cell viability was determined by measuring lactate dehydrogenase (LDH), and the effects of selective alpha 2-adrenergic receptor antagonist yohimbine (0-500 nM) and N-methyl-D-aspartic acid (NMDA) receptor agonist NMDA (0-100 µM) were evaluated. Agmatine’s protective effect was compared to a selective NMDA receptor antagonist MK-801. After a 16-h exposure to H2O2, the LDH assay showed cell loss greater than 50%, which was reduced to about 30% when agmatine was pretreated before injury. Yohimbine almost completely inhibited agmatine’s protective effect, but NMDA did not. In addition, MK-801 (0-100 µM) did not significantly attenuate the H2O2-induced cytotoxicity. Our results suggest that neuroprotective effects of agmatine on RGCs under oxidative stress may be mainly attributed to the alpha 2-adrenergic receptor signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effects of adverse conditions such as constant light (LL) on the circadian rhythm of malate (MDH, EC 1.1.1.37) and lactate (LDH, EC 1.1.1.27) dehydrogenase activities of the testes of male Wistar rats on postnatal day 28 (PN28), anxiety-like behavior (elevated plus-maze test) at PN60 and sexual behavior at PN120. The rats were assigned to mother groups on day 10 of pregnancy: control (12-h light/dark), LL (light from day 10 to 21 of pregnancy), and LL+Mel (LL and sc injection to the mothers of a daily dose of melatonin, 1 mg/kg body weight at circadian time 12, from day 17 to 21 of pregnancy). LL offspring did not show circadian rhythms of MDH (N = 62) and LDH (N = 63) activities (cosinor and ANOVA-LSD Fisher). They presented a 44.7% decrease in open-arm entries and a 67.9% decrease in time (plus-maze test, N = 15, P < 0.001, Mann-Whitney U-test and Kruskal-Wallis test), an increase in mounting (94.4%), intromission (94.5%) and ejaculation (56.6%) latencies (N = 12, P < 0.01, Mann-Whitney U-test and Kruskal-Wallis test) and lower numbers of these events (61, 59 and 73%, respectively; P < 0.01, N = 12) compared to controls. The offspring of the LL+Mel group presented MDH and LDH circadian rhythms (P < 0.05, N = 50, cosinor and ANOVA-LSD Fisher), anxiety-like and sexual behaviors similar to control. These findings supported the importance of the melatonin signal and provide evidence for the protective effects of hormones on maternal programming during gestation. This protective action of melatonin is probably related to its entrainment capacity, favoring internal coupling of the fetal multioscillatory system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal dietary protein restriction during pregnancy is associated with low fetal birth weight and leads to renal morphological and physiological changes. Different mechanisms can contribute to this phenotype: exposure to fetal glucocorticoid, alterations in the components of the renin-angiotensin system, apoptosis, and DNA methylation. A low-protein diet during gestation decreases the activity of placental 11ß-hydroxysteroid dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic-pituitary-adrenal axis in the offspring. The abnormal function/expression of type 1 (AT1R) or type 2 (AT2R) AngII receptors during any period of life may be the consequence or cause of renal adaptation. AT1R is up-regulated, compared with control, on the first day after birth of offspring born to low-protein diet mothers, but this protein appears to be down-regulated by 12 days of age and thereafter. In these offspring, AT2R expression differs from control at 1 day of age, but is also down-regulated thereafter, with low nephron numbers at all ages: from the fetal period, at the end of nephron formation, and during adulthood. However, during adulthood, the glomerular filtration rate is not altered, due to glomerulus and podocyte hypertrophy. Kidney tubule transporters are regulated by physiological mechanisms; Na+/K+-ATPase is inhibited by AngII and, in this model, the down-regulated AngII receptors fail to inhibit Na+/K+-ATPase, leading to increased Na+ reabsorption, contributing to the hypertensive status. We also considered the modulation of pro-apoptotic and anti-apoptotic factors during nephrogenesis, since organogenesis depends upon a tight balance between proliferation, differentiation and cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence has indicated the importance of cancer stem cells in carcinogenesis. The goal of the present study was to determine the effect of low-dose cisplatin on enriched liver cancer stem cells (LCSCs). Human hepatoblastoma HepG2 cells were treated with concentrations of cisplatin ranging from 1 to 5 μg/mL. Cell survival and proliferation were evaluated using a tetrazolium dye (MTT) assay. LCSCs were identified using specific markers, namely aldehyde dehydrogenase-1 (ALDH1) and CD133. The percentage of ALDH1+ or CD133+ cells was examined by flow cytometric analysis. The expression of ALDH1 and/or CD133 in HepG2 cells was determined by immunocytochemical analysis. Low-dose cisplatin treatment significantly decreased cell survival in HepG2 cells after 24 or 72 h. However, the percentage of LCSCs in the surviving cells was greatly increased. The percentage of ALDH1+ or CD133+ cells was increased in a time- and dose-dependent manner after treatment with 1-4 μg/mL cisplatin, whereas 5 μg/mL cisplatin exposure slightly reduced the number of positive cells. These findings indicate that low-dose cisplatin treatment may efficiently enrich the LCSC population in HepG2 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maple syrup urine disease (MSUD) is an autosomal recessive disease associated with high levels of branched-chain amino acids. Children with MSUD can present severe neurological damage, but liver transplantation (LT) allows the patient to resume a normal diet and avoid further neurological damage. The use of living related donors has been controversial because parents are obligatory heterozygotes. We report a case of a 2-year-old child with MSUD who underwent a living donor LT. The donor was the patient's mother, and his liver was then used as a domino graft. The postoperative course was uneventful in all three subjects. DNA analysis performed after the transplantation (sequencing of the coding regions of BCKDHA, BCKDHB, andDBT genes) showed that the MSUD patient was heterozygous for a pathogenic mutation in the BCKDHB gene. This mutation was not found in his mother, who is an obligatory carrier for MSUD according to the family history and, as expected, presented both normal clinical phenotype and levels of branched-chain amino acids. In conclusion, our data suggest that the use of a related donor in LT for MSUD was effective, and the liver of the MSUD patient was successfully used in domino transplantation. Routine donor genotyping may not be feasible, because the test is not widely available, and, most importantly, the disease is associated with both the presence of allelic and locus heterogeneity. Further studies with this population of patients are required to expand the use of related donors in MSUD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.