208 resultados para COPPER-OXIDE CATALYST
Resumo:
A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.
Resumo:
A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.
Resumo:
A new solid phase extraction (SPE) method has been developed for the selective separation and preconcentration of Cu (II) ions in food and water samples prior to its flame atomic absorption spectrometry determination. The method is based on the adsorption of the Cu(II) - 2-{[4-Amino-3-(4-methylphenyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]acetyl}-N-phenyl hydrazinecarbothioamide complex on Amberlite XAD-8 resin. The metal complex retained on the resin was eluted with 7.5 mL of 2.0 mol L-1 HCl in acetone. The optimum conditions for the SPE of Cu(II) ions were investigated, and the method was subsequently applied to sea water, stream water, rice, tea, and tobacco samples for the determination of Cu(II) levels.
Resumo:
In this work, the preparation and characterization of materials such as zirconium oxide (ZrO2) and phosphotungstic acid promoted zirconium oxide (ZrO2-H3PW12O40) is presented. Physico-chemical characterization results showed that addition of H3PW12O40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO2 matrix delayed the sintering of the material and stabilized ZrO2 in the tetragonal phase. ZrO2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO2-H3PW12O40 catalyst was active for n-pentane isomerization at 250 °C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity.
Resumo:
Copper and zinc are common elements in paint residues and can be toxic to estuarine organisms. This study aims to determine the labile dissolved and labile particulate fractions (LPFs) of copper and zinc in the estuarine waters of a shipyard in southern Brazil under different salinity levels and in different seasons. The labile dissolved fraction was determined using the diffusive gradient in thin-film (DGT) technique. The variations in DGT-Cu (0.22-1.05 µg L-1), DGT-Zn (0.54-18.39 µg L-1), LPF-Cu (1.22-3.77 µg g-1), and LPF-Zn (4.29-19.12 µg g-1) concentration were related to changes in their physico-chemical parameters and as a result of boat maintenance activities.
Resumo:
A new cloud point extraction (CPE) method was developed for the separation and preconcentration of copper (II) prior to spectrophotometric analysis. For this purpose, 1-(2,4-dimethylphenyl) azonapthalen-2-ol (Sudan II) was used as a chelating agent and the solution pH was adjusted to 10.0 with borate buffer. Polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent in the presence of sodium dodecylsulphate (SDS). After phase separation, based on the cloud point of the mixture, the surfactant-rich phase was diluted with acetone, and the enriched analyte was spectrophotometrically determined at 537 nm. The variables affecting CPE efficiency were optimized. The calibration curve was linear within the range 0.285-20 µg L-1 with a detection limit of 0.085 µg L-1. The method was successfully applied to the quantification of copper in different beverage samples.
Resumo:
A range of hydroxypropargylpiperidones were efficiently obtained by a one-pot three-component coupling reaction of aldehydes, alkynols, and a primary amine equivalent (4-piperidone hydrochloride hydrate) in ethyl acetate using copper(I) chloride as a catalyst. The developed protocol proved to be equally efficient using a range of aliphatic aldehydes, including paraformaldehyde, and using protected and unprotected alkynols.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
This paper describes a three-week mini-project for an Experimental Organic Chemistry course. The activities include N-C cross-coupling synthesis of N-(4-methoxyphenyl) benzamide in an adapted microwave oven by a copper catalyst (CuI). Abilities and concepts normally present in practical organic chemistry courses are covered: use of balances, volumetric glassware, separation of mixtures (liquid-liquid extraction and filtration), chromatographic techniques, melting point determination and stoichiometric calculations.
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
The equilibrium geometries of α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene (DBDT) and α,α-ditert-butyl-4H-cyclopenta[2,1-b,3;4-b']dithiophene S-oxide (DBDTO) were studied at the DFT level of theory with a standard 6-311G* basis set. The molecular structures of the DBDT series were more planar than the corresponding DBDTO series, as revealed by dihedral angles. The UV-visible absorption calculated at TD-DFT/6-311G* showed two absorption peaks for all the molecules except C=S and C=O bridged molecules. In DBDTOs, C=S and C=O bridged molecules showed three and four absorption peaks, respectively. The DBDTOs had lower band gaps and longer wavelengths compared to the corresponding DBDTs.
Resumo:
This article describes the development of a new catalytic reactor designed to operate with nanoparticle-embedded polymer thin films. Stabilization of metal nanoparticles in films that serve as catalysts in organic reactions is relatively new; therefore, the development of reactors to facilitate their use is necessary. We describe in detail the preparation of the GDCR reactor-type "dip catalyst" and its evaluation in the Suzuki - Miyaura cross-coupling reaction of phenylboronic acid and 4-bromoanisole catalyzed by palladium nanoparticle-embedded cellulose acetate thin film (CA/PD(0)). Compared with earlier prototypes, GDCR reactor showed excellent results when operating with CA/PD(0) thin films.
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
Electrosynthesis of dimethyl carbonate (DMC) from methanol and carbon monoxide using an Cu(phen)Cl2 catalyst was achieved at room temperature and atmospheric pressure. The catalytic activity of the ligand 1,10-phenanthroline (phen) and the catalytic system were analyzed. The IR characterization results for the complex catalyst showed that copper ions were coordinated by nitrogen atoms of phen. In addition, the effects of the influencing factors, such as reaction time (t), reaction temperature (T) and the surface area of the working electrode (SWE) were studied.