264 resultados para CHLORINE-RESISTANT MEMBRANE
Resumo:
Vancomycin-resistant enterococci (VRE) have recently emerged as a nosocomial pathogen and present an increasing threat to the treatment of severely ill patients in intensive-care hospital settings. We outline results of a study of the epidemiology of VRE transmission in ICUs and define a reproductive number R0; the number of secondary colonization cases induced by a single VRE-colonized patient in a VRE-free ICU, for VRE transmission. For VRE to become endemic requires R0 >1. We estimate that in the absence of infection control measures R0 lies in the range 3-4 in defined ICU settings. Once infection control measures are included R0=0.6, suggesting that admission of VRE-colonized patients can stabilize endemic VRE.
Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi
Resumo:
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.
Resumo:
Extensive characterisation of Trypanosoma cruzi by isoenzyme phenotypes has separated the species into three principal zymodeme groups, Z1, Z2 and Z3, and into many individual zymodemes. There is marked diversity within Z2. A strong correlation has been demonstrated between the strain clusters determined by isoenzymes and those obtained using random amplified polymorphic DNA (RAPD) profiles. Polymorphisms in ribosomal RNA genes, in mini-exon genes, and microsatellite fingerprinting indicate the presence of at least two principal T. cruzi genetic lineages. Lineage 1 appears to correspond with Z2 and lineage 2 with Z1. Z1 (lineage 2) is associated with Didelphis. Z2 (lineage 1) may be associated with a primate host. Departures from Hardy-Weinberg equilibrium and linkage disequilibrium indicate that propagation of T. cruzi is predominantly clonal. Nevertheless, two studies show putative homozygotes and heterozygotes circulating sympatrically: the allozyme frequencies for phosphoglucomutase, and hybrid RAPD profiles suggest that genetic exchange may be a current phenomenon in some T. cruzi transmission cycles. We were able to isolate dual drug-resistant T. cruzi biological clones following copassage of putative parents carrying single episomal drug-resistant markers. A multiplex PCR confirmed that dual drug-resistant clones carried both episomal plasmids. Preliminary karyotype analysis suggests that recombination may not be confined to the extranuclear genome.
Resumo:
We collected and analyzed 500 samples of human milk, from five Brazilian cities (100 from each) to detect methicillin-resistant strains of Staphylococcus aureus (MRSA) producing enterotoxins. We found 57 strains of MRSA, and the mecA gene, responsible for resistance, was detected in all of them using a specific molecular probe. We examined 40 strains for the presence of four enterotoxins, after selecting a subset that included all strains from each region, except for the largest sample, from which 10 were randomly selected. Among these two presented enterotoxin B, and growth in human colostrum and trypicase soy broth. After 5 h of incubation at 37°C, population sizes were already higher than 9.4 x 105 UFC/ml and enterotoxin was released into culture medium and colostrum. Our results stress the importance of hygiene, sanitary measures, and appropriate preservation conditions to avoid the proliferation of S. aureus in human milk.
Resumo:
Methicillin resistant Staphylococcus aureus (MRSA) is an organism that is frequently transmitted in hospitals and perinatal units. The MRSA is considered a public health problem in neonatology because of its strong potential for dissemination in the wards associated with high rates of morbidity and mortality. In this study we describe the bacteriological, epidemiological and molecular characteristics of MRSA isolated from anterior nares and blood cultures of newborns hospitalized in a public maternity hospital in the city of Rio de Janeiro, Brazil. The frequency of MRSA isolated from nasal swabs of newborns was 47.8% (43/90). The genetic analysis of MRSA strains from anterior nares, showed 8 different pulsed field gel electrophoresis patterns (PFGE). Upon analysis of PFGE patterns of the 12 MRSA strains isolated from blood cultures, 8 different patterns were observed, 9 (75%) strains were genetic related to nasal secretion isolates patterns. In conclusion, our data demonstrate the importance of screening of newborns for the presence of MRSA in Brazilian hospitals and the usefulness of genetic typing of these pathogen during epidemiologic studies. This should lead to a better knowledge on the significancy and spreading of MRSA in the hospitals.
Resumo:
We evaluated the mutations in a 193bp of the rpoB gene by automated sequencing of rifampicin (RMP)-resistant and susceptible Mycobacterium tuberculosis strains isolated from Brazil (25 strains) and France (37 strains). In RMP-resistant strains, mutations were identified in 100% (16/16) from France and 89% (16/18) from Brazil. No mutation was detected in the 28 RMP-susceptible strains. Among RMP-resistant or RMP-susceptible strains deletion was observed. A double point mutation which had not been reported before was detected in one strain from France. Among French resistant strains mutations were found in codons 531 (31.2%), 526, 513 and 533 (18.7% each). In Brazilian strains the most common mutations were in codons 531 (72.2%), 526 (11.1%) and 513 (5.5%). The heterogeneity found in French strains may be related to the fact that most of those strains were from African or Asian patients.
Resumo:
Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.
Resumo:
Calcium signalling is fundamental for muscular contractility of Schistosoma mansoni. We have previously described the presence of transport ATPases (Na+,K+-ATPase and (Ca2+-Mg2+)-ATPase) and calcium channels (ryanodine receptors - RyR) involved in control of calcium homeostasis in this worm. Here we briefly review the main technics (ATPase activity, binding with specific radioligands, fluxes of 45Ca2+ and whole worm contractions) and results obtained in order to compare the distribution patterns of these proteins: thapsigargin-sensitive (Ca2+-Mg2+)-ATPase activity and RyR co-purified in P1 and P4 fractions mainly, which is compatible with a sarcoplasmic reticulum localization, while basal ATPase (along with Na+,K+-ATPase) and thapsigargin-resistant (Ca2+-Mg2+)-ATPase have a distinct distribution, indicative of their plasma membrane localization. Finally we attempt to integrate these contributions with data from other groups in order to propose the first synoptic model for control of calcium homeostasis in S. mansoni.
Resumo:
The standardized method to study the polymorphism of IS 6110 was used to characterize 53 isolates of Mycobacterium tuberculosis obtained during 1991-1992 from 14 regions in Colombia. In Valle region cluster rate was 25% (4/16). The mean number of IS6110 band was 10 ± 3. Similarity between strains was of 60% in 81% of strains and this tended to be correlated with geographic origin. For the first time M. tuberculosis without IS6110 bands in restriction fragment length polymorphism analysis was found in Colombia. Additional studies are necessaries in order to best characterize the situation in relation to human immunodeficiency virus epidemic and recent changes in tuberculosis control program.
Resumo:
The analysis of the genetic variability related to susceptibility to Schistosoma mansoni infection in the vector of the genus Biomphalaria is important in terms of a better understanding of the epidemiology of schistosomiasis itself, the possible pathological implications of this interaction in vertebrate hosts, and the formulation of new strategies and approaches for disease control. In the present study, the genetic variability of B. glabrata strains found to be resistant or susceptible to S. mansoni infection was investigated using DNA amplification by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The amplification products were analyzed on 8% polyacrylamide gel and stained with silver. We selected 10 primers, since they have previously been useful to detect polymorphism among B. glabrata and/or B. tenagophila. The results showed polymorphisms with 5 primers. Polymorphic bands observed only in the susceptible strain. The RAPD-PCR methodology represents an adequate approach for the analysis of genetic polymorphisms. The understanding of the genetic polymorphisms associated to resistance may contribute to the future identification of genomic sequences related to the resistance/susceptibility of Biomphalaria to the larval forms of S. mansoni and to the development of new strategies for the control of schistosomiasis.
Resumo:
High doses of gamma radiation (10 Krad) in Biomphalaria tenagophila snails (Taim strain), which have been found to be resistant to Schistosoma mansoni, were not sufficient to impair their resistance to the parasite. The number of hemocytes, as well as their phagocytic activity, were not affected by irradiation, thus showing resemblance with mammal macrophages, which are resistant to gamma irradiation also.
Resumo:
Biomphalaria tenagophila population from Taim (state of Rio Grande do Sul, Brazil) is totally resistant toSchistosoma mansoni, and presents a molecular marker of 350 bp by polymerase chain reaction and restriction fragment length polymorphism of the entire rDNA internal transcriber spacer. The scope of this work was to determine the heritage pattern of this marker. A series of cross-breedings between B. tenagophila from Taim (resistant) and B. tenagophila from Joinville, state of Santa Catarina (susceptible) was carried out, and their descendants F1 and F2 were submitted to this technique. It was possible to demonstrate that the specific fragment from Taim is endowed with dominant character, since the obtained segregation was typically mendelian.
Resumo:
Multi-resistant gram-negative rods are important pathogens in intensive care units (ICU), cause high rates of mortality, and need infection control measures to avoid spread to another patients. This study was undertaken prospectively with all of the patients hospitalized at ICU, Anesthesiology of the Hospital São Paulo, using the ICU component of the National Nosocomial Infection Surveillance System (NNIS) methodology, between March 1, 1997 and June 30, 1998. Hospital infections occurring during the first three months after the establishment of prevention and control measures (3/1/97 to 5/31/97) were compared to those of the last three months (3/1/98 to 5/31/98). In this period, 933 NNIS patients were studied, with 139 during the first period and 211 in the second period. The overall rates of infection by multi-resistant microorganisms in the first and second periods were, respectively, urinary tract infection: 3.28/1000 patients/day; 2.5/1000 patients/day; pneumonia: 2.10/1000 patients/day; 5.0/1000 patients/day; bloodstream infection: 1.09/1000 patients/day; 2.5/1000 patients/day. A comparison between overall infection rates of both periods (Wilcoxon test) showed no statistical significance (p = 0.067). The use of intervention measures effectively decreased the hospital bloodstream infection rate (p < 0.001), which shows that control measures in ICU can contribute to preventing hospital infections.