126 resultados para Bull’s tail
Resumo:
The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg) phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg) induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg) induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.
Resumo:
The recently cloned extracellular calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones) and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs) or antagonizing it (calcilytic drugs), and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.
Resumo:
Ouabain increases vascular resistance and may induce hypertension by inhibiting the Na+ pump. The effects of 0.18 and 18 µg/kg, and 1.8 mg/kg ouabain pretreatment on the phenylephrine (PHE; 0.1, 0.25 and 0.5 µg, in bolus)-evoked pressor responses were investigated using anesthetized normotensive (control and uninephrectomized) and hypertensive (1K1C and DOCA-salt treated) rats. Treatment with 18 µg/kg ouabain increased systolic and diastolic blood pressure in all groups studied. However, the magnitude of this increase was larger for the hypertensive 1K1C and DOCA-salt rats than for normotensive animals, while the pressor effect of 0.18 µg/kg ouabain was greater only in DOCA-salt rats. A very large dose (1.8 mg/kg) produced toxic effects on the normotensive control but not on uninephrectomized or 1K1C rats. Rat tail vascular beds were perfused to analyze the effects of 10 nM ouabain on the pressor response to PHE. In all animals, 10 nM ouabain increased the PHE pressor response, but this increase was larger in hypertensive DOCA-salt rats than in normotensive and 1K1C rats. Results suggested that a) increases in diastolic blood pressure induced by 18 µg/kg ouabain were larger in hypertensive than normotensive rats; b) in DOCA-salt rats, smaller ouabain doses had a stronger effect than in other groups; c) hypertensive and uninephrectomized rats were less sensitive to toxic doses of ouabain, and d) after treatment with 10 nM ouabain isolated tail vascular beds from DOCA-salt rats were more sensitive to the pressor effect of PHE than those from normotensive and 1K1C hypertensive rats. These data suggest that very small doses of ouabain, which might produce nanomolar plasma concentrations, enhance pressor reactivity in DOCA-salt hypertensive rats, supporting the idea that endogenous ouabain may contribute to the increase and maintenance of vascular tone in hypertension.
Resumo:
A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 µg; confidence limits 2.65 and 4.2) > streptomycin (5.68 µg; 3.76 and 8.57) = neomycin (9.22 µg; 6.98 and 12.17) > magnesium (19.49 µg; 11.46 and 33.13). The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 µg; confidence limits 1.46 and 2.9) > streptomycin (47.86 µg; 26.3 and 87.1) = neomycin (83.17 µg; 51.6 and 133.9). The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.
Resumo:
The objective of the present study was to investigate whether the injection of a tolerated protein (indirect effects) affects the formation of granulomas around Schistosoma mansoni eggs trapped in the lungs after intravenous (iv) injection into normal (noninfected) C57BL/6 mice (6 animals per group). To induce oral tolerance to chicken egg ovalbumin a 1/5 dilution of egg white in water was offered ad libitum in a drinking bottle for 3 days. Control mice received water. After 7 days, control and experimental animals were injected iv with 2,000 S. mansoni eggs through a tail vein. In some mice of both groups the iv injection of eggs was immediately followed by intraperitoneal (ip) immunization with 10 µg of dinitrophenylated conjugates of ovalbumin (DNP-Ova) emulsified in complete Freund's adjuvant (CFA) or only CFA; 18 days later, mice were bled and killed by ether inhalation. The lungs were fixed in formalin and embedded in paraffin. Serial sections of 5 µm were stained with Giemsa, Gomori's silver reticulin and Sirius red (pH 10.2). Granuloma diameters were measured in histological sections previously stained with Gomori's reticulin. Anti-DNP and anti-soluble egg antigen (SEA) antibodies were analyzed by ELISA. In mice orally tolerant to ovalbumin the concomitant ip injection of DNP-Ova resulted in significantly lower anti-SEA antibodies (ELISA*: 1395 ± 352 in non-tolerant and 462 ± 146 in tolerant mice) and affected granuloma formation around eggs, significantly decreasing granuloma size (area: 22,260 ± 2478 to 12,993 ± 3242 µm²). Active mechanisms triggered by injection of tolerated antigen (ovalbumin) reduce granuloma formation.
Resumo:
We compared the intensity and frequency of arthritis in old (8-12 months, N = 12) and juvenile (2 months, N = 10) rats and determined the role played by adrenal glands in this disorder. Arthritis was induced by subcutaneous injection of Mycobacterium butyricum at the base of the tail of female Holtzman rats at day zero. Paw edema and hyperalgesia were monitored from day zero to day 21 after induction as signs of arthritis development. Some (N = 11) old animals were adrenalectomized bilaterally and treated with dexamethasone or celecoxib immediately following surgery. All bilaterally adrenalectomized old animals became susceptible to arthritis and the onset of disease was shortened from the 10th to the 5th day. Hyperalgesia and paw edema responses were less frequent in older animals (50 and 25% compared to control juvenile rats, respectively), although old responder animals showed responses of similar intensity to those of their juvenile counterparts: by the 14th day the data for hyperalgesia were juvenile = 0.8 ± 0.07/old = 0.8 ± 0.09, and for paw edema juvenile = 56.6 ± 6.04/old = 32.24 ± 12.7, reported as delta% increase in paw edema. Chronic treatment of adrenalectomized old animals with dexamethasone (0.01 or 0.1 mg/kg) but not celecoxib (3 mg/kg), once daily for 21 days by gavage, abolished the effects of adrenalectomy, in particular those related to the hyperalgesia response (old = 0.95 ± 0.03/dexamethasone = 0 ± 0; 14th day), thus suggesting a specific participation of circulating corticosteroids in the modulation of pain in old arthritic rats.
Resumo:
Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8%, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9% NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL.
Resumo:
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Resumo:
T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1) and a1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.
Resumo:
We determined the neutralizing activity of 12 ethanolic extracts of plants against the edema-forming, defibrinating and coagulant effects of Bothrops asper venom in Swiss Webster mice. The material used consisted of the leaves and branches of Bixa orellana (Bixaceae), Ficus nymphaeifolia (Moraceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plant of Pleopeltis percussa (Polypodiaceae) and Trichomanes elegans (Hymenophyllaceae); rhizomes of Renealmia alpinia (Zingiberaceae), Heliconia curtispatha (Heliconiaceae) and Dracontium croatii (Araceae), and the ripe fruit of Citrus limon (Rutaceae). After preincubation of varying amounts of each extract with either 1.0 µg venom for the edema-forming effect or 2.0 µg venom for the defibrinating effect, the mixture was injected subcutaneously (sc) into the right foot pad or intravenously into the tail, respectively, to groups of four mice (18-20 g). All extracts (6.2-200 µg/mouse) partially neutralized the edema-forming activity of venom in a dose-dependent manner (58-76% inhibition), with B. orellana, S. orbicularis, G. panamensis, B. rosademonte, and D. croatii showing the highest effect. Ten extracts (3.9-2000 µg/mouse) also showed 100% neutralizing ability against the defibrinating effect of venom, and nine prolonged the coagulation time induced by the venom. When the extracts were administered either before or after venom injection, the neutralization of the edema-forming effect was lower than 40% for all extracts, and none of them neutralized the defibrinating effect of venom. When they were administered in situ (sc at the same site 5 min after venom injection), the neutralization of edema increased for six extracts, reaching levels up to 64% for C. limon.
Resumo:
We investigated the somatic maturation of neonate rats treated during the suckling period with citalopram, a selective serotonin reuptake inhibitor. Groups with 6 male neonates were randomly assigned to different treatments 24 h after birth. Each litter was suckled by one of the dams until the 21st postnatal day. Body weight, head axis and tail length were measured daily from the 1st to the 21st postnatal day. Time of ear unfolding, auditory conduit opening, incisor eruption, and eye opening was determined. Pups received 5 mg (Cit5), 10 mg (Cit10) or 20 mg/kg (Cit20) citalopram sc, or saline (0.9% NaCl, w/v, sc). Compared to saline, body weight was lower (24.04%, P < 0.01) for Cit10 from the 10th to the 21st day and for Cit20 from the 6th to the 21st day (38.19%, P < 0.01). Tail length was reduced in the Cit20 group (15.48%, P < 0.001) from the 8th to the 21st day. A reduction in mediolateral head axis (10.53%, P < 0.05) was observed from the 11th to the 21st day in Cit10 and from the 6th to the 21st day in Cit20 (13.16%, P < 0.001). A reduction in anteroposterior head axis was also observed in the Cit20 group (5.28%, P < 0.05) from the 13th to the 21stday. Conversely, this axis showed accelerated growth from the 12th to the 21stday in the Cit5 group (13.05%, P < 0.05). Auditory conduit opening was delayed in the Cit5 and Cit20 groups and incisor eruption was delayed in all citalopram groups. These findings show that citalopram injected during suckling to rats induces body alterations and suggest that the activity of the serotoninergic system participates in growth mechanisms.
Resumo:
The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.
Resumo:
The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.