104 resultados para Biochemical compound
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.
Resumo:
An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.
Resumo:
Our objective was to evaluate the concentrations of serum 25-hydroxyvitamin D [25(OH)D], serum calcium, serum phosphorus, alkaline phosphatase, and parathormone (PTH) in patients with polyarticular juvenile idiopathic arthritis (JIA) and to associate them with disease duration and activity, bone mineral density and use of medications. In a cross-sectional and controlled study, 30 patients with polyarticular JIA were evaluated and compared to 30 healthy individuals matched for age and gender. Clinical status, anthropometry, laboratory markers in both patients and controls, and bone mineral density, only in the patients, were measured. Of the 30 patients included in the study, 23 (76.7%) were female and 16 (53.3%) non-Caucasian; mean age was 14 years (range = 4 to 20 years). Mean disease duration was 5 years (range = 1 to 12 years). The mean concentrations of serum albumin-corrected calcium (9.04 ± 0.41 mg/dL) and alkaline phosphatase (153.3 ± 100.1 IU) were significantly lower in patients with JIA than in controls (P < 0.0001 and P = 0.001, respectively). No differences in 25(OH)D, PTH or serum phosphorus were observed between JIA and control subjects. Regarding 25(OH)D concentration, 8 patients (26.7%) and 5 controls (16.7%) had 25(OH)D concentrations compatible with deficiency (lower than 20 ng/mL) and 14 patients (46.7%) and 18 controls (60%) had concentrations compatible with insufficiency (20-32 ng/mL). These values were not associated with disease activity, use of medications or bone mineral density. We observed a high frequency of 25(OH)D insufficiency and deficiency in the study sample. The compromised bone metabolism emphasizes the importance of follow-up of JIA patients.
Resumo:
Brazil is the second soybean (Glycine max L. Merrill) producer and exporter in the world. In 2005, soybean cultivated in the southeastern region of the country suffered drought stress imposed by adverse high temperatures and low humidity during its reproductive stage. Little information is available regarding the effect of drought stress on the quality of grains. In this study chemical and biochemical characteristics of five soybean samples belonging to three different cultivars grown under drought stress were evaluated. The samples did not meet standards for marketing and contained high amounts of green seeds. Grains were analyzed for appearance, 100 seed weight, humidity, water activity, proteins, lipids, lipoxygenase 1 activity, peroxides, and pigment contents after harvest and after 20 months of storage at room temperature. Acidity was measured also after 30 months of storage. The values of water activity and humidity were 0.6-0.7 and 8.7-11.9%, respectively, and they did not change during storage time, but there was an increase in acidity, which alludes to lipase activity. The activity of lipoxygenase 1 was greatly affected. Immediately after harvest, the green pigments were represented mainly by pheophytin a, followed by pheophytin b, small quantities of chlorophyll b and chlorophyll a, and traces of other chlorophyll derivatives. After 20 months of storage almost all green pigments had disappeared. Drought stress probably enhanced membrane permeability, which led to a lower pH and promoted transformation of chlorophylls to pheophytins.
Resumo:
The objective of this research was to produce and characterize lipid particles (MpLs) that may be used as carriers of high amounts of hydrophilic core and evaluate the influence of the core amount on the performance of lipid microparticles. The MpLs were produced by spray cooling from solid and liquid lipid mixtures (stearic and oleic fatty acids and partly hydrogenated vegetable fat) containing glucose solution as core and soy lecithin as surfactant. The performance of MpLs was evaluated by means of the effective amount of encapsulated core, the core amount present on the surface of MpLs (superficial glucose) and the core release profile in aqueous solution. Morphological observations showed that MpLs presented spherical shape and a rugged and continuous surface, and an average diameter between 25 and 32 µm. The effective amount of encapsulated core was greater than 78% for all formulations evaluated. Larger amounts of superficial glucose were found in formulations in which more concentrated glucose solutions were used, regardless of the glucose lipid-solution ratio. The release results showed that core retention was significantly influenced by the glucose solution concentration, whereas release modulation was influenced by the glucose lipid-solution ratio.
Resumo:
The hypolipidemic effects of several medicinal plants have already been demonstrated, but many plants commonly used to treat diseases still need to be studied. Peppermint (Mentha piperita) is widely consumed by the population for different purposes, but not for the treatment of dyslipidemias. The objective of this study was to examine the effects of this plant on human biochemical and anthropometric profiles and blood pressure, based on the administration of peppermint juice twice daily for 30 days. Blood samples were collected before and after the treatment in order to determine the glycemic and lipid profiles, and the Body Mass Index (BMI) analysis was performed. Results indicated that 41.5% of the subjects showed a reduction in glycemia, 66.9% in total cholesterol levels, 58.5% in triacylglycerides, 52.3% in LDL-c (low-density lipoproteins) indices, 70% in GOT (glutamic-oxaloacetic transaminase) levels, 74.5% in GPT (glutamic-pyruvic transaminase) levels, and that 52% presented an increase in HDL-c (high-density lipoprotein cholesterol) indices. Also, 52.5% showed a decrease in blood pressure and 48.7% in BMI. The use of peppermint by humans can be considered beneficial in the prevention and treatment of risk factors of chronic degenerative diseases.
Resumo:
Existing data about the aroma of fresh-cut watermelon and the metabolic changes that occur with minimal processing are scarce. Given the close relationship that exists between aroma, texture, and quality characteristics, it is necessary to investigate the changes in the volatile profile and texture of watermelon, a fruit extensively sold in supermarket chains throughout Brazil. The objective of this work was to analyze the volatile profile using solid phase microextraction (SPME) as well as texture changes in fresh-cut watermelon stored at 5 °C for ten days. Chromatography associated with sensory analysis (sniffing) led us to conclude that 9-carbon (C9) alcohols and aldehydes are the major responsible for the flavor and aroma of minimally processed watermelon stored at 5 ± 1 °C/90 ± 5% RH for ten days, and also that the aroma diminishes in intensity with storage, but it does not affect the final quality of the product. It was noted that the amount of drained liquid, soluble pectin, and weight loss increased during storage concurrently with a reduction in firmness and a structural breakdown of the cells. Pectin methyl esterase activity remained constant and polygalacturonase activity was not detected.
Resumo:
The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0) to L* = 45.3 and Hue angle = 69.8° (t = 3 days), whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0°) to (L* = 67.0; Hue angle = 83.8°) within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.
Resumo:
The purpose of this study was to introduce yam in the development of two new composite flours containing soy and cassava. Two composite flours were obtained after fermentation of yam, soybean, and cassava in respectively 60, 30, and 10% proportions. Two varieties of yam were used: Dioscorea alata (variety "Bete bete") and Dioscorea cayenensis (variety "Lokpa"). Proximate composition, mineral content, some anti-nutritional factors (oxalates, phenols), microbiological quality, and α-amylase digestibility were determined for the fermented and unfermented composite flours. The results indicated that for the composite flours made of D. alata and D. cayenensis, fermentation increased ash and titrable acidity. Carbohydrates, pH, and energy decreased. Crude fat content was not affected by the fermentation process. Anti-nutritional factors such as oxalates and phenols were found to decrease significantly after the fermentation of the composite flours. Fermentation increased the mineral content (Mg, K, Fe, and Ca) of the composite flours. A decrease in P and Na was observed after fermentation. The microbiological study showed that safety flours contain no potential pathogenic germs. The in vitro α-amylase digestibility of the composite flours was significantly improved after fermentation. The biochemical characteristics and good hygienic quality of the obtained flours suggest that these flours can be considered as a feeding alternative for children in poor areas where yam is produced.
Resumo:
The knowledge of biotechnology increases the risk of using biochemical weapons for mass destruction. Prions are unprecedented infectious pathogens that cause a group of fatal neurodegenerative diseases by a novel mechanism. They are transmissible particles that are devoid of nucleic acid. Due to their singular characteristics, Prions emerge as potential danger since they can be used in the development of such weapons. Prions cause fatal infectious diseases, and to date there is no therapeutic or prophylactic approach against these diseases. Furthermore, Prions are resistant to food-preparation treatments such as high heat and can find their way from the digestive system into the nervous system; recombinant Prions are infectious either bound to soil particles or in aerosols. Therefore, lethal Prions can be developed by malicious researchers who could use it to attack political enemies since such weapons cause diseases that could be above suspicion.
Resumo:
The importance of minimally processed commodities in the retail groceries of most developed countries has been rising continuously during the last decades. Cantaloupe melon is used more than any other fruit in fresh-cut processing. Ultraviolet (UV) light has been extensively used to simulate biological stres in plants and for determining resistance mechanisms of plant tissues. In this study the effect of ultraviolet irradiation on some properties of fresh-cut cantalope melon was determined during storage. Freshly cut cantalope melons cubes treated with ultraviolet irradiation at the doses of 1, 2 or 3 min before storage, and then placed in a cold room at 5±1°C temperature and 85-90% RH. Hue angle values of control group is low compared to UV-C treated samples, whereas L values of is high. EL of UV treated samples higher than those of control group. Total soluble solids of fresh-cut melon samples in UC3 treatment increased during storage. The results indicate that UV-C treatments on fresh-cut cantaloupe melon cubes increased total soluble solids independently from water loss.
Resumo:
Calcium chloride is widely used in industries as a firming agent, and also to extend shelf-life of vegetables. The aim of this study was to determine, the effect of different doses of calcium chloride on biochemical and color properties of fresh-cut green bean. Fresh-cut green beans were dipped for 90 seconds in 0.5%, 1%, 2% and 3% solution of calcium chloride at 25°C. The fresh-cut green bean samples were packaged in polystyrene foam dishes, wrapped with stretch film and stored in a cold room at 5±1°C temperature and 85-90% RH. Calcium chloride treatments did not retain the green color of samples. Whiteness index, browning index and total color difference (ΔE) values of CaCl2 treated samples were high. Saturation index and hue angle were low compared to the control, especially at higher doses of CaCl2. Polyphenol oxidase (PPO) enzyme activity in samples treated with CaCl2 at 3% doses, was low at the 7th days of storage than with other treatments. Fructose and sucrose content of samples increased in all treatment groups whereas glucose level decreased during the first 4th days of storage.
Resumo:
There is a growing consumer demand for higher healthy foods such as berries which are a rich source of phenolic compounds. The current work evaluated blackberry cultivars: Cherokee, Tupy and Xavante; raspberry cultivars: Heritage, Fallgold and Black; and the hybrid Boysenberry. All berries were grown under homogenous subtropical conditions in Brazil. Black raspberry, Cherokee and Tupy blackberry cultivars showed the highest ratio between soluble solid contents and titratable acidity, and Fallgold and Heritage raspberry showed the highest titratable acidity. Total phenolic content ranged from 2.03 to 5.33 g kg–1 fresh weight and total anthocyanin content registered values from 0.41 to 1.81 g kg–1 fresh weight. The most common phenolic acids were gallic, p-coumaric and ellagic, and for anthocyanins: cyanidin-3-glucoside and malvinidin-3-glucoside. Antioxidant capacity ranged from 14.13 to 21.51 mol equivalent trolox kg–1 fresh weight. Black raspberry, all blackberry cultivars and the Boysenberry hybrid are appropriate to be consumed fresh, while Fallgold and Heritage raspberries are recommended to the food industry. Due to their phenolic richness and antioxidant properties, these fruits are of great interest to the fresh fruit market and to pharmaceutical industries. These results could help breeders and growers when planning the cultivar selection according to their foreseeable destination.
Resumo:
A previously healthy 19 year-old male presented to the hospital with anorexia, nausea, and vomiting. Laboratory studies were significant for hypercalcemia (peak calcium value of 14.8 mg/dL) and acute kidney injury (peak serum creatinine of 2.88 mg/dL). He admitted to using a parenteral formulation of vitamins A, D and E restricted for veterinary use containing 20,000,000 IU of vitamin A; 5,000,000 IU of vitamin D3; and 6,800 IU of vitamin E per 100 mL vial. The patient stated to have used close to 300 mL of the product over the preceding year. Interestingly, the young man was not interested in the massive amounts of vitamins that the product contained; he was only after the local effects of the oily vehicle. The swelling produced by the injection resulted in a silicone-like effect, which gave the impression of bigger muscles. Nevertheless, the product was absorbed and caused hypervitaminosis. The serum level of 25(OH) vitamin D was clearly elevated at 150 ng/mL (reference range from 30 to 60 ng/mL), but in most published cases of vitamin D toxicity, serum levels have been well above 200 ng/mL. His PTH level was undetectable and other potential causes of hypercalcemia were excluded. Therefore, we posit that the severity of the hypercalcemia observed in this case was the result of a synergistic effect of vitamins A and D. The patient was treated with normal saline, furosemide and zolendronic acid, with rapid normalization of calcium levels and renal function.