176 resultados para BIOLOGICAL INVASION
Resumo:
Primary powders of Bacillus sphaericus strain S2 isolated from soil samples in Brazil, and strain 2362 were produced in a 14 liter fermentor. Growth patterns and sporulation observed in three trials with strains S2 and 2362 in the fermentor were similar. Second-instar larvae of Culex quinquefasciatus, Anopheles albimanus, Anopheles quadrimaculatus, and Aedes aegypti exposed for 48 hr to strain S2 responded with LC50 values of 0.25, 5.95, 12.28 and 140.0 ppb of lyophilized primary powder, respectively. Under the same conditions, strain 2362 resulted in LC50 values of 0.39, 7.16, 16.93 and 307.0 ppb of lyophilized primary powder, respectively, in those mosquito larvae. Statistical analysis of the bioassay data did not show significant differences among LC50 values observed in B. sphaericus strains S2 and 2362, at the 0.05 level. Toxins of strains S2 and 2362 were extracted at pH 12 with NaOH. Electrophoresis of the extracts in polyacrylamide gel under denaturing conditions revealed the 51 and 42 kDa toxins in both S2 and 2362 B. sphaericus strains. The presence of the 42 kDa peptide in the extracts was confirmed by Western blot and Elisa, with anti-42 kDa IgG previously prepared from strain 2362.
Detection of Campylobacter jejuni Invasion of HEp-2 Cells by Acridine Orange-Crystal Violet Staining
Resumo:
Development of Schistosoma mansoni in the intermediate host Biomphalaria glabrata is influenced by a number of parasite and snail genes. Understanding the genetics involved in this complex host/parasite relationship may lead to an often discussed approach of introducing resistant B. glabrata into the field as a means of biological control for the parasite. For the snail, juvenile susceptibility to the parasite is controlled by at least four genes, whereas one gene seems to be responsible for adult nonsusceptibility. Obtaining DNA from F2 progeny snails from crosses between parasite-resistant and-susceptible snails, we have searched for molecular markers that show linkage to either the resistant or susceptible phenotype. Both restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) approaches have been used. To date, using a variety of snail and heterologous species probes, no RFLP marker has been found that segregates with either the resistant or susceptible phenotype in F2 progeny snails. More promising results however have been found with the RAPD approach, where a 1.3 kb marker appears in nearly all resistant progeny, and a 1.1 kb marker appears in all susceptible progeny
Resumo:
Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a) the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT) medium at 28oC is 58±13 hr; (b) differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c) trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d) blood forms are highly infective to mice; (e) blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a) isoenzymatic profiles are characteristic of zymodeme ZB; (b) PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c) schizodeme, randomly amplified polymorphic DNA (RAPD) and DNA fingerprinting analyses were performed
Resumo:
In many helminth infected hosts the number of eosinophils increases dramatically, often without any concurrent increases in the number of other leukocytes, so that eosinophils become the dominant cell type. Many experimental investigations have shown that the eosinophilia is induced by interleukin-5 (IL-5) but its functional significance remains unclear. Mice genetically deficient in IL-5 (IL-5-/-) have been used to evaluate the functional consequences of the IL-5 dependent eosinophilia in helminth infected hosts. Host pathology and level of infection were determined in IL-5-/- and wild type mice infected with a range of species representative of each major group of helminths. The effects of IL-5 deficiency were very heterogeneous. Of the six species of helminth examined, IL-5 dependent immune responses had no detectable effect in infections with three species, namely the cestodes Mesocestoides corti and Hymenolepis diminuta and the trematode Fasciola hepatica. In contrast, IL-5 dependent immune responses were functionally important in mice infected with three species, notably all nematodes. Damage to the lungs caused by migrating larvae of Toxocara canis was reduced in IL-5-/- mice. Infections of the intestine by adult stages of either Strongyloides ratti or Heligmosomoides polygyrus were more severe in IL-5-/- mice. Adult intestinal nematodes were clearly deleteriously affected by IL-5 dependent processes since in its presence there were fewer worms which had reduced fecundity and longevity. The implications of these results for the viability of using inhibitors of IL-5 as a therapy for asthma are considered.
Resumo:
The infection pattern in Swiss mice and Triatomine bugs (Rhodnius neglectus) of eleven clones and the original stock of a Trypanosoma cruzi isolate, derived from a naturally infected Didelphis marsupialis, were biochemically and biologically characterized. The clones and the original isolate were in the same zymodeme (Z1) except that two clones were found to be in zymodeme 2 when tested with G6PDH. Although infective, neither the original isolate nor the clones were highly virulent for the mice and lesions were only observed in mice infected with the original stock and one of the clones (F8). All clones and the original isolate infected bugs well while only the original isolate and clones E2 and F3 yielded high metacyclogenesis rates. An observed correlation between absence of lesions in the mammal host and high metacyclogenesis rates in the invertebrate host suggest a evolutionary trade off i.e. a fitness increase in one trait which is accompanied by a fitness reduction in a different one. Our results suggest that in a species as heterogeneous as T. cruzi, a cooperation effect among the subpopulations should be considered.
Resumo:
Through its life cycle from the insect vector to mammalian hosts Trypanosoma cruzi has developed clever strategies to reach the intracellular milieu where it grows sheltered from the hosts' immune system. We have been interested in several aspects of in vitro interactions of different infective forms of the parasite with cultured mammalian cells. We have observed that not only the classically infective trypomastigotes but also amastigotes, originated from the extracellular differentiation of trypomastigotes, can infect cultured cells. Interestingly, the process of invasion of different parasite infective forms is remarkably distinct and also highly dependent on the host cell type.
Resumo:
Because of its ability to prey on Triatominae in rural houses, Clerada apicicornis has been suggested as a potential biological control agent of Rhodnius prolixus. It has also been suggested as a potential vector of mammalian trypanosomes such as Trypanosoma cruzi, because of its ability to take blood directly from mammals. To help resolve these conflicting ideas, we assessed the haematophagic behaviour of C. apicicornis by carrying out feeding trials on laboratory animals. Cleptohaematophagic behaviour was also assessed by allowing C. apicicornis to feed on R. prolixus previously engorged with avian blood. The low proportion of blood meals taken directly from laboratory animals indicates a facultative haematophagy in this species, whereas a greater proportion of nymphs and adults were able to obtain vertebrate blood by predation on engorged R. prolixus. The results suggest that C. apicicornis is unlikely to be effective as a biological control agent, but is also unlikely to have a significant role in the transmission of vertebrate pathogens.
Resumo:
Infection of non-adherent TG180 murine sarcoma cells with Toxoplasma gondii was compared, at the ultrastructural level, in both in vivo and in vitro conditions. Suspensions of 3.0 x 10(6) TG180 cells infected in vitro with 1.0 x 10(6) parasites of the RH strain were harvested between the first and 6th day post-infection and processed for transmission electron microscopy. In vivo infection was made by intraperitoneal inoculation in mice of 1.0 x 10(6) TG180 cells, that were co-inoculated with a parasite suspension at the same cell concentration. Cells were harvested 10, 20, 30 min and 24, 48 h post-inoculation and processed for transmission electron microscopy at the same conditions of the in vitro culture. It was observed TG180 murine sarcoma cells with intense and equivalent intracellular parasitism in both conditions. Host cells with parasitophorous vacuoles containing up to 16 parasites, as well as parasites undergoing mitoses or presenting a bradyzoite-like morphology, were frequently seen in both culture methods.