125 resultados para Alternative Formulations
Resumo:
It is well known that the numerical solutions of incompressible viscous flows are of great importance in Fluid Dynamics. The graphics output capabilities of their computational codes have revolutionized the communication of ideas to the non-specialist public. In general those codes include, in their hydrodynamic features, the visualization of flow streamlines - essentially a form of contour plot showing the line patterns of the flow - and the magnitudes and orientations of their velocity vectors. However, the standard finite element formulation to compute streamlines suffers from the disadvantage of requiring the determination of boundary integrals, leading to cumbersome implementations at the construction of the finite element code. In this article, we introduce an efficient way - via an alternative variational formulation - to determine the streamlines for fluid flows, which does not need the computation of contour integrals. In order to illustrate the good performance of the alternative formulation proposed, we capture the streamlines of three viscous models: Stokes, Navier-Stokes and Viscoelastic flows.
Resumo:
The resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone herbicides is a worldwide problem in paddy fields. A rapid diagnosis is required for the selection of adequate prevention and control practices. The objectives of this study were to develop expedite bioassays to identify the resistance to imidazolinone herbicides in barnyardgrass and to evaluate the efficacy of alternative herbicides for the post-emergence control of resistant biotypes. Three experiments were conducted to develop methods for diagnosis of resistance to imazethapyr and imazapyr + imazapic in barnyardgrass at the seed, seedling and tiller stages, and to carry out a pot experiment to determine the efficacy of six herbicides applied at post-emergence in 13 biotypes of barnyardgrass resistant to imidazolinones. The seed soaking bioassay was not able to differentiate the resistant and susceptible biotypes. The resistance of barnyardgrass to imidazolinones was effectively discriminated in the seedlings and tiller bioassays seven days after incubation at the concentrations of 0.001 and 0.0001 mM, respectively, for both imazethapyr and imazapyr + imazapic. The biotypes identified as resistant to imidazolinones showed different patterns of susceptibility to penoxsulam, bispyribac-sodium and pyrazosulfuron-ethyl, and were all controlled with profoxydim and cyhalofop-butyl. The seedling and tiller bioassays are effective in the diagnosis of barnyardgrass resistance to imidazolinone herbicides, providing an on-season opportunity to identify the need to use alternative herbicides to be applied at post-emergence for the control of the resistant biotypes.
Resumo:
The intensive use of pesticides have contaminated the soil and groundwater. The application of herbicides as controlled release formulations may reduce the environmental damage related to their use because it may optimize the efficiency of the active ingredient and reducing thus the recommended dose. The objective of this study was to evaluate the persistence of the herbicide atrazine applied as commercial formulation (COM) and as controlled release formulation (xerogel - XER) in Oxisol. The experimental design used was split-plot randomized-blocks with four replications, in a (2 x 6) + 1 arrangement. The two formulations (COM and XER) were assigned to main plots and different atrazine concentrations (0, 3.200, 3.600, 4.200, 5.400 and 8.000 g atrazine ha-1) were assigned to sub-plots. Persistence was determined by means of dissipation kinetics and bioavailability tests. The methodology of bioassays to assess the atrazine availability is efficient and enables to distinguish the tested formulations. The availability of atrazine XER is higher than the commercial in two different periods: up to 5 days after herbicide application and at the 35th day after application. The XER formulation tends to be more persistent in relation to COM formulation.
Resumo:
Recent studies indicate that glyphosate applied in post-emergence in RR soybean can eventually cause phytotoxic effects. However, there are many questions that need to be clarified in the scientific and technical contexts, involving the issue of RR soybeans regarding the use of glyphosate. This study has assessed the impact of the application of different doses and formulations of glyphosate in the reproductive period of RR soybean (R1 stage). For that purpose, an experiment in the field was conducted in two harvests (2011/12 and 2012/13), in which a 2 x 5 factorial design was used (formulations versus doses) totaling 10 treatments. In these two experiments the variables related to agronomic performance were: phytotoxicity (7, 14, 21 and 28 days after application), plant height, number of pods per plant, yield and weight of 100 grains (end of soy cycle). The results obtained allowed characterizing phytotoxicity and damages to the height and yield in RR soybean, with increasing rates of glyphosate applied in the reproductive period.
Resumo:
Volatilization represents an important process in the displacement of pesticides for the environment. The physicochemical properties of the clomazone molecule indicate its relative volatility. Therefore, this study was carried out to assess the volatilization of different clomazone herbicide formulations using bioindicator species. To that end, airtight glass boxes were used with the presence of different clomazone formulations and plant species. The formulations used were Gamit 360 CS(r), Gamit 500 EC(r) and Gamit Star(r). The plant species assessed were maize, sorghum and rice. With the results obtained it is possible to conclude that, among the formulations, Gamit 360 CS(r) has caused less phytotoxicity to the bioindicator species in comparison to the formulations of Gamit 500 EC(r) and Gamit Star(r) formulations. In general, The Gamit 500 EC(r) and Gamit Star(r) have not differed in the phytotoxicity potential for the bioindicator species.
Resumo:
Mobility of atrazine in soil has contributed to the detection of levels above the legal limit in surface water and groundwater in Europe and the United States. The use of new formulations can reduce or minimize the impacts caused by the intensive use of this herbicide in Brazil, mainly in regions with higher agricultural intensification. The objective of this study was to compare the leaching of a commercial formulation of atrazine (WG) with a controlled release formulation (xerogel) using bioassay and chromatographic methods of analysis. The experiment was a split plot randomized block design with four replications, in a (2 x 6) + 1 arrangement. The main formulations of atrazine (WG and xerogel) were allocated in the plots, and the herbicide concentrations (0, 3200, 3600, 4200, 5400 and 8000 g ha-1), in the subplots. Leaching was determined comparatively by using bioassays with oat and chromatographic analysis. The results showed a greater concentration of the herbicide in the topsoil (0-4 cm) in the treatment with the xerogel formulation in comparison with the commercial formulation, which contradicts the results obtained with bioassays, probably because the amount of herbicide available for uptake by plants in the xerogel formulation is less than that available in the WG formulation.
Resumo:
ABSTRACTEfficiency of weed control can be increased if the herbicide formulation provides higher target coverage and evaporation time that enable an adequate distribution of herbicide on the target plant, allowing the absorption to continue even after the droplets evaporation. The aim of this research was to assess the influence of glyphosate formulations on the wetted area and evaporation time of droplets on different targets. Tests were conducted with droplets sizing from 500 μm containing three formulations of glyphosate (isopropylamine salt, ammonium salt and potassium salt) deposited on three surfaces, two leaves (Bidens pilosa and Cenchrus echinatus) and glass slides. Sequential images analyses were used to quantify the evaporation time and the wetted area. An experimental system was utilized that was composed of a droplet generator, a stereo microscope with a camera to capture images, as well as an environmental chamber controlled for temperature and relative humidity. The kind of glyphosate formulations and target surfaces are crucial in the wetted area and evaporation time. The isopropylamine salt decreased the wetted area and evaporation time when compared with ammonium salt and potassium salt for all the surfaces deposited on. Bidens pilosa allows an increased wetted area for all the glyphosate formulations when compared to Cenchrus echinatus and glass slides.
Resumo:
The repetitive use of iodosulfuron for the control of weeds in winter cereals in the south of Brazil has favored the emergence of resistant Raphanus sativus biotypes. The objective of this study was to evaluate: the response of Raphanus sativus biotypes susceptible and resistant to different dosages of iodosulfuron; the control of biotypes with alternative registered herbicides for the control of the species in crops of wheat, corn and soybean; and the existence of cross-resistance of the biotypes. Thus, four experiments were done in a greenhouse, with a completely randomized design and four replicates. The experimental units were composed of vases with a volumetric capacity of 0.75 L filled with substrate, containing a plant each. For the dose-response curve, three biotypes (factor A) and nine doses of the iodosulfuron herbicide (factor B) were used. For the alternative control, the recommendation was herbicides in pre or postemergence of the crops, and the crossed-resistance was evaluated by using herbicides that inhibit the ALS enzyme of different chemical groups. The analyzed variables were control and shoot dry matter. GR50 of the susceptible biotype (B1) was 0.11 g a.i. ha-1, whereas GR50 of resistant biotypes (B4 and B13) was 102.9 and 86.8 g a.i. ha-1 of the iodosulfuron herbicide, respectively. The resistant biotypes presented crossed resistance to herbicides that inhibit the ALS enzyme, where the control can be efficient with the use of herbicides with different action mechanisms.
Resumo:
Six common bean cultivars were crossed in diallel and the segregant populations were assessed in the F2 and F3 generations to compare methodologies for parental selection in a breeding program based on hybridization. The cultivars involved in the diallel were A 114, A 77, ESAL 686, Milionário, Carioca, and Flor de Mayo. The segregant F2 and F3 generations were assessed on the experimental campus of the Universidade Federal de Larvas, in July 1994. It was found that the cultivars differed in their general combining ability (GCA). Flor de Mayo, which belongs to the Durango race, had the largest positive GCA estimate for grain field, and the cultivars from the Mesoamerican race, Milionário and A 114, the smallest GCA estimates. For flowering, the cultivar that most contributed to reduced plant cycle was ESAL 686. There was agreement among the results obtained from the diallel and the estimates of the parameter m + a of the populations. However, it was evident that the estimate of genetic variance of the populations should be considered as a condition to identify the hybrid population that will produce a line with high performance.
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.
Resumo:
Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.
Resumo:
Galectin-1 belongs to an evolutionarily conserved family of animal ß-galactoside-binding proteins, which exert their functions by crosslinking the oligosaccharides of specific glycoconjugate ligands. During the past decade, attempts to identify the functional role of galectin-1 suggested participation in the regulation of the immune response. Only in the last few years has the molecular mechanism involved in these properties been clearly elucidated, revealing a critical role for galectin-1 as an alternative signal in the generation of T cell death. In the present study we will discuss the latest advances in galectin research in the context of the regulation of the immune response, not only at the central level but also at the periphery. Moreover, we will review the purification, biochemical properties and functional significance of a novel galectin-1-like protein from activated rat macrophages, whose expression is differentially regulated according to the activation state of the cells. The novel role of a carbohydrate-binding protein in the regulation of apoptosis is providing a breakthrough in galectin research and extending the interface between immunology, glycobiology and clinical medicine.
Resumo:
It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.
Resumo:
Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.
Resumo:
In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.