222 resultados para Álcool desidrogenase
Resumo:
This work reports the analysis of inorganic and organic contaminants in alcohol fuel samples using capillary electrophoresis. Chloride and sulfate were analyzed in nitrate/ monochloroacetic acid at 10 mmol L-1 concentration each under indirect UV detection (210 nm). The analysis of aldehydes is based on the 216 nm detection of 3-methyl-2-benzothiazoline hydrazone adducts. The running buffer consisted of 20 mmol L-1 tetraborate , 40 mmol L-1 sodium dodecyl sufate and 12 mmol L-1 beta-ciclodextrin. Both methodologies were applied to real samples indicating inorganic ion concentrations from 0.15 to 6.64 mg kg-1 and aldehydes from 32.0 to 91.3 mg L-1.
Resumo:
A square wave voltammetric method is described for the determination of acetaldehyde using the derivatization reaction with hydrazine sulphate, based on the reduction of hydrazone generated as a product that exhibits a single well-defined peak at -1.19V in acetate buffer at pH 5. Calibration graphs were obtained from 1.0 x 10-6 mol L-1 to 10 x 10-6 mol L-1 of acetaldehyde, using a reaction time of 8 min and a hidrazine concentration of 0.02 mol L-1. The detection limit was 2.38 x 10-7 mol L-1. The method was applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pre-treatment.
Resumo:
In the present work three ferroin reagents were studied for the simultaneous spectrophotometric determination of iron and copper: 1,10-phenanthroline, 2,2'-bipyridine and 2,4,6-tri(2-pyridyl)-1,3,5-triazine. Effect of pH, conditions, order reagent addition, interferences, amount of reagents, lineal range, sensitivity and stability of each system were compared. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine can be used for determination of iron in the presence of copper with a detection limit of 5 µg L-1 and coefficient of variation of 2.0%; However it was not possible to determine directly copper in the presence of iron with this reagent. 1,10-phenanthroline can be used for simultaneous determination of the metallic ions with detection limits of 7 and 8 mg L-1 and coefficients of variation of 1.8 and 2.3% in the determination of iron and copper, respectively. The results showed also that 2,2'-bipyridine can be used for simultaneous determination of the metallic ions with detection limits of 11 and 32 µg L-1 and coefficients of variation of 1.9 and 2.5% in the determination of iron and copper, respectively. The reagents were used for spectrophotometric determination of iron and copper in ethanol fuel.
Resumo:
Initially, all major factors that affect the rate of the AldH-catalyzed reaction (enzyme concentration, substrate concentration, temperature and pH) were investigated. Optimal activity was observed between pH values of 7.5 and 9.5 in the temperature range of 25 to 50 ºC. Kinetic parameters, such as Km (2.92 µmol L-1) and Vmax (1.33 10-2 µmol min-1) demonstrate a strong enzyme-substrate affinity. The sensors were based on screen-printed electrodes modified with the Meldola Blue-Reinecke salt (MBRS) combination. Operational conditions (NAD+ and substrate contents, enzyme loading and response time) were optimized. Also, two enzyme immobilization procedures were tested: entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) and crosslinking with glutaraldehyde. Chronoamperometry was employed to observe the biosensor responses during enzymatic hydrolysis of propionaldehyde and also to construct inhibition curves with maneb and zineb fungicides. Best results were found with the following conditions: [NAD+] = 0.25 mmol L-1; [propionaldehyde] = 80 µmol L-1; enzyme loading = 0.8 U per electrode; response time = 10 min, and inhibition time = 10 min. Current intensities around 103 ± 13 nA with the sensors and good stability was obtained for both immobilization procedures. Detection limits, calculated using 10% inhibition were 31.5 µg L-1 and 35 µg L-1 for maneb and zineb, respectively. Results obtained with other MBRS-modified electrodes consisting of mono and bi-enzymic sensors were compared. The ability to catalyze NADH oxidation by MB was also highlighted.
Resumo:
In this study, novel Chitosan/PVA based films were chemically crosslinked by glutaraldehyde, under pH=(4,00 ±0,05), in order to achieve structures tailored for wound tissue engineering applications. Both precursors and developed films were characterized by FTIR, SEM and XRD in order to determine the presence of chemicals groups and nanostructural order, respectively. The results have shown that the glutaraldehyde crosslinking have altered the crystallinity of pure chitosan and the increase on the C=N bands and simultaneous decrease on NH2 bands suggested that Chitosan/GA crosslinking has preference to occur in carbon-2 of the saccharide ring by the Schiff's base reaction. Also, FTIR spectroscopy clearly showed that crosslinking has also taken place with blends of PVA and chitosan. The mechanical properties presented high degree dependence with on the increase of the content of chitosan and glutaraldehyde. The results have indicated that, by controlling the ratio [PVA]/[chitosan] in the blends and the extent of chemical crosslinking, it was possible to tailor the hybrid network produced aiming to obtain properties of interest for the specific application.
Resumo:
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.
Resumo:
The composite membranes prepared via incorporation of 12.5% of molecular sieves 3A, 4A, 5A and 13X into chitosan/poly(vinyl alcohol) (1:1). The composite membranes were immersed in the cross-linker sulfuric acid in order to acquire high proton conductivity for applications in electrolytes in PEMCF and DMF. The influence of the molecular sieves on the structural, optical, thermal, mechanical, morphologic and protonic conductivity properties and water/methanol swelling degree of membranes were investigated.
Resumo:
An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.
Resumo:
The objective of this work was to manufacture biodegradable films based on cassava starch, polyvinyl alcohol (PVA) and sodium montmorillonite (Na-MMT), using glycerol as a plasticizer. These films were characterized according to their microstructure, optical, mechanical, and barrier properties. The combination of starch-PVA-MMT resulted in films with a more homogeneous surface than starch films. The introduction of PVA into the starch matrix led to the formation of films with lower water vapor permeability (WVP), higher tensile strength and greater elongation. MMT was exfoliated in the films, resulting in greater stability for different relative humidities, lower WVP, higher resistance and lower flexibility.
Resumo:
Drug-loaded films represent an alternative method for the treatment of skin lesions caused by Herpes simplex, since they facilitate delivery of the drug directly at the site of lesion. The objective of this work was to prepare PVA/PAA films containing AC at pH 2.0 and 4.0. The results show that the pH of the film preparations influences the polymer¾drug interaction kinetic order and the degree of swelling. The mechanism of release of AC from the films obtained at pH 4.0 was anomalous, whereas for the films prepared at pH 2.0 the release followed zero-order kinetics.
Resumo:
A sensitive spectrophotometric method was developed for sulphate determination in automotive ethanol fuel. The method based on the reaction of the analyte with barium-dibromosulphonazo(III) complex lead to a decrease in the magnitude of the absorbance signals monitored at 649 nm. No sample pretreatment is required and the proposed method allows sulphate determination in the 0.45 - 6.50 mg L-1 range with R.S.D. < 2% and limit of detection of 0.14 mg L-1. The method has been successfully applied for sulphate determination in automotive ethanol fuel and the results agreed with the reference chromatographic method.
Resumo:
AbstractFilms obtained by blends between starch and other polymers and films developed with the addition of an oil can show higher water vapor barriers and improved mechanical properties. Films with starch/PVOH/alginate were obtained by adding copaiba and lemongrass essential oils (EOs). Films without oil served as the control. The microstructure, water vapor permeability (PVA), mechanical properties, and antifungal activity were determined for the films. The effects of the addition of the EOs on the properties of the films were dependent of the concentration and type of oil. The films with 0.5% lemongrass EO were similar to the control films. These films showed a 2.02 × 10-12 g s-1Pa m-1 PVA, 11.43 MPa tensile stress, 13.23% elongation, and 247.95 MPa/mm resistance at perforation. The addition of 1% of copaiba EO increased the PVA from 0.5 × 10-12 to 12.1 × 10-12 g s-1 Pa m-1 and the diffusion coefficient from 0.17 × 10-8 to 7.15 × 10-8m2/day. Films with quantities of EOs displayed fissures and micropores; the control films developed micropores with smaller diameters than films with EOs. The addition of EOs did not change the resulting infrared spectrum of the films. The films with oil displayed a diminished development of the Fusarium sp. culture, and the film without EOs did not display notable differences in the development of the culture. The starch/PVOH/alginate films with 0.5% lemongrass EO were the most suited for the development of a packaging active system.
Resumo:
A presença de metais pesados em álcool combustível origina-se na produção e armazenamento do álcool etílico, constituindo uma contaminação inorgânica. A análise quantitativa deste contaminante tem sido usualmente monitorada empregando-se técnicas convencionais de análise tal como espectrofotometria de absorção atômica. Tendo em vista a alta sensibilidade das técnicas voltamétricas de redissolução anódica para a quantificação de metais e que poucos estudos foram realizados para este tipo de matriz, este trabalho tem por objetivo desenvolver uma metodologia eletroanalítica para a determinação de zinco em álcool combustível. A determinação eletroquímica para o zinco em meio aquoso utilizando-se a modalidade de varredura linear exibe uma corrente de pico anódica em um potencial de -1,12 V vs. ECS, apresentando uma dependência linear em relação à concentração de zinco no intervalo de 5,0x10-7 a 5,0x10-6 mol.L-1 com uma sensibilidade amperométrica de 1,2x10(6) miA.mol-1.L e um limite de detecção de 2,6x10-7 mol.L-1. A análise de íons zinco em amostra comercial de álcool combustível foi determinada pela adição de 200 miL de amostra em um volume final de 20 mL de eletrólito-suporte, sendo obtida a concentração de zinco na amostra pelo método de adição de padrão com um valor correspondente a 5,7± 0,19x10-5 mol.L-1 em zinco.
Resumo:
O método empregado para a determinação de sódio por espectrometria de emissão atômica em chama, foi o das adições de analito sendo as intensidades de emissão representadas em função das concentrações de analito adicionadas às várias porções da amostra, numa faixa linear de 0 - 0,300 mg Na L-1, empregando-se 2,1 g K L-1 como supressor de ionização. Foram analisadas 20 amostras comerciais de álcool etílico hidratado combustível (AEHC), coletadas em diferentes postos de abastecimento, na cidade de Araraquara e os resultados obtidos encontram-se no intervalo, desde menor que o limite de detecção (0,0072 mg Na L-1) até 1,55 mg Na L-1. Os limites de detecção referentes à determinação de sódio em cada amostra situam-se entre 0,0026 e 0,0239 mg Na L-1. A porcentagem de recuperação variou no intervalo de 95 a 104 %. Os desvios padrão relativos (n=12) foram £ 4,1 % para as três adições de analito, nas 20 amostras de AEHC.
Resumo:
O objetivo deste trabalho foi empregar a análise exploratória de dados, no caso, a técnica de análise de componentes principais (PCA) como ferramenta na avaliação de modificadores químicos na determinação direta e simultânea de Al, As, Cu, Fe, Mn e Ni em álcool etílico combustível por espectrometria de absorção atômica em forno de grafite (GFAAS). Os modificadores químicos avaliados foram: Pd(NO3)2 + Mg(NO3)2; W/Rh; W+ co-injeção de Pd(NO3)2 + Mg(NO3)2 e para cada modificador foram utilizadas trintas amostras de álcool etílico combustível. Como dados experimentais foram utilizados os resultados dos testes de adição e recuperação dos analitos frente aos diferentes modificadores químicos estudados. O emprego da técnica de PCA possibilitou a separação dos tipos de modificadores em função do intervalo de recuperação do analito. Dentre os modificadores avaliados, W+ co-injeção de Pd(NO3)2 + Mg(NO3)2 apresentou-se como a espécie de maior correlação positiva, pois apresenta os maiores teores de recuperação, e sendo assim, foi o escolhido para o desenvolvimento de metodologia para determinação direta e simultânea de Al, As, Cu, Fe, Mn e Ni em álcool etílico combustível por GFAAS.