144 resultados para water hardness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a participant study, quasi-experimental, of a before and after type. A quantitative approach of biophysiological measures was used, represented by the saturation of oxygen measured by pulse oximeter (SpO2), and recorded on three occasions: before, during and after the bedbath in critically ill patients hospitalized at the ICU of a University Hospital in Brazil. Objective: to compare the SpO2 in various stages of the bath, with and without control of water temperature. Data collection was performed between December 2007 and April 2008 on a convenience sample consisting of 30 patients aged over 18 who had classification in TISS-28 from level II. Results show that water temperature control means a lower variation of SpO2 (p<0.05). No marked differences in variation of saturation between men and women or between age groups were established. In conclusion, heated and constant water temperature during the bedbath is able to minimize the fall of SpO2 that occurs while handling patients during procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of water velocity speed on the local distribution and taxocenosis structure of blackfly larvae. The larvae were collected from two adjacent streams located in the municipality of Angra dos Reis (RJ): Caputera River and one of its tributaries. Riffle litter patches were sampled randomly using a 30 x 30 cm quadrat. Four blackfly species were found: Simulium incrustatum s. l. Lutz, 1910; Simulium (Inaequalium) sp. ; Simulium pertinax s. l. Kollar, 1832 and Simulium subpallidum s. l. Lutz, 1909. Among these species, Simulium pertinax s. l. was clearly associated with higher water current speeds, while Simulium subpallidum s. l. showed association with lower water velocities, and Simulium (Inaequalium) sp. had a relatively constant distribution along the water current gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil water storage of Central Amazonian soil profiles in upland forest plots subjected to selective logging (in average, 8 trees or 34, 3 m³ of timber per hectare were removed) was measured in four layers, down to a depth of 70 cm. The study lasted 27-months and was divided in two phases: measurements were carried out nearly every week during the first 15 months; in the following year, five intensive periods of measurements were performed. Five damage levels were compared: (a) control (undisturbed forest plot); (b) centre of the clearing/gap; (c) edge of the gap; (d) edge of the remaining forest; and (e) remaining forest. The lowest values for water storage were found in the control (296 ± 19.1 mm), while the highest were observed (333 ± 25.8 mm) in the centre of the gap, during the dry period. In the older gaps (7.5-8.5 year old), soil water storage was similar to the remaining and the control forest, indicating a recovery of hydric soil properties to nearly the levels prior to selective logging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries) and the other with soil data from an irrigation scheduling and management system (239 entries). From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Losses of productivity of flooded rice in the State of Rio Grande do Sul, Brazil, may occur in the Coastal Plains and in the Southern region due to the use of saline water from coastal rivers, ponds and the Laguna dos Patos lagoon, and the sensibility of the plants are variable according to its stage of development. The purpose of this research was to evaluate the production of rice grains and its components, spikelet sterility and the phenological development of rice at different levels of salinity in different periods of its cycle. The experiment was conducted in a greenhouse, in pots filled with 11 dm³ of an Albaqualf. The levels of salinity were 0.3 (control), 0.75, 1.5, 3.0 and 4.5 dS m-1 kept in the water layer by adding a salt solution of sodium chloride, except for the control, in different periods of rice development: tillering initiation to panicle initiation; tillering initiation to full flowering; tillering initiation to physiological maturity; panicle initiation to full flowering; panicle initiation to physiological maturity and full flowering to physiological maturity. The number of panicles per pot, the number of spikelets per panicle, the 1,000-kernel weight, the spikelet sterility, the grain yield and phenology were evaluated. All characteristics were negatively affected, in a quadratic manner, with increased salinity in all periods of rice development. Among the yield components evaluated, the one most closely related to grain yields of rice was the spikelet sterility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.