79 resultados para tree species richness and composition
Resumo:
In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.
Resumo:
Three sampling sites were analysed in each of the following tropical regions: 1) northwestern São Paulo State, representing a disturbed region; 2) Bonito, Mato Grosso do Sul State, representing a hard water region; and 3) Ubatuba, northern costal region of São Paulo State, a well preserved tropical rainforest region. The hard water region had the highest mean values for macroalgal species richness (6.3) and diversity index (H' = 0.62). Northwest and rainforest regions had the highest percent cover values (22.5% and 17.0%, respectively). All sites in the northwest region had one or two dominant species (percent cover significantly higher than the remaining species), characterizing the niche pre-emption distribution pattern. The same pattern was found in two sites of the Atlantic rainforest. The hard water region had dominance of one species in two out of the three sites, but differently from the northwest region, niche overlap values were lower, evidencing a patch distribution. Competition for space was one of the main factors to explain spatial distribution. Overall, sites characterized by niche pre-emption had lower species richness, higher values for niche width and overlap, dominance index and percent cover of dominant species. In contrast, sites characterized by patch distribution had higher species richness and lower values for niche overlap and width, dominance index and percent cover.
Resumo:
The high species richness and diversity found in tropical montane habitats are often related to: 1) an effect of climatic and geological history on biotic evolution; 2) the various environmental impacts on species adaptation mechanisms; and 3) the continuous dispersal of fauna and flora in time. However, little is known about how these factors shaped species richness in Brazilian mountains. Official documents on biodiversity in Brazil make no explicit reference to mountains, even though there is a mountain work programme of the Convention on Biological Diversity, which Brazil is a signatory of. This paper discusses the importance of mountain ecosystems in Brazil to show the urgent need to include mountain biodiversity in the national agenda of biodiversity research and conservation.
Resumo:
There is an important pioneer vegetation formation along the Xingu River in the area where the Belo Monte hydroelectric dam is being constructed that is highly adapted to a seasonally fluctuating water levels. The aim of this study was to examine the habitat and flora of the pioneer formations in the Belo Monte area. The area was divided in three sections for study purposes (Reservoir, Low Flow, and Control) that were expected to experience different degrees of impact from the dam project. The calculations of habitat losses were based on satellite imagery classifications, and a total of 111 plots were established in the three areas for vegetation sampling. Habitat losses of the pioneer formations will total 89.7% when the project is fully functional. Forty-five of the 72 recorded species are restricted to single areas. Species richness and diversity were significantly lower in the control area. The completion of the Belo Monte reservoir will result in habitat reductions and will consequently reduce the richness and diversity of pioneer formations. Studies suggest monitoring the populations located in the reduced flow area to determine possible impacts resulting from changes in the regional hydrological cycle caused by the Xingu River dam.