287 resultados para silty clay soil
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
The objective of this work was to evaluate the correlation between sugarcane yield and some physical and chemical attributes of soil. For this, a 42‑ha test area in Araras, SP, Brazil, was used. Soil properties were determined from samples collected at the beginning of the 2003/2004 harvest season, using a regular 100x100 m grid. Yield assessment was done with a yield monitor (Simprocana). Correlation analyses were performed between sugarcane yield and the following soil properties: pH, pH CaCl2, N, C, cone index, clay content, soil organic matter, P, K, Ca, Mg, H+AL, cation exchange capacity, and base saturation. Correlation coefficients were respectively ‑0.05, ‑0.29, 0.33, 0.41, ‑0.27, 0.22, 0.44, ‑0.24, trace, ‑0.06, 0.01, 0.32, 0.14, and 0.04. Correlations of chemical and physical attributes of soil with sugarcane yield are weak, and, per se, they are not able to explain sugarcane yield variation, which suggests that other variables, besides soil attributes, should be analysed.
Resumo:
The present study sought to observe the behavior of soils in natural state and in mixtures, in different ratios, with the industrial solid residue called whitewash mud. The work was conducted with samples of typical soils from the region of Alagoinhas, Bahia-Brazil. Wet chemical analysis and atomic absorption spectrophotometry were used in order to obtain the classification of the industrial solid residue. Solubilization and leaching tests were performed and X-ray diffraction and electron microscopy techniques were carried out. The results showed that the whitewash mud was classified as non-inert, but with great capacity of heavy metal retention largely owed to the kaolinite and goethite presence in the clay fraction of the soils, making it difficult to have heavy metals readily available for exchange.
Resumo:
ABSTRACT The soil carbon under Amazonian forests has an important roles in global changing, making information on the soil content and depths of these stocks are considerable interest in efforts to quantify soil carbon emissions to the atmosphere.This study quantified the content and soil organic carbon stock under primary forest up to 2 m depth, at different topographic positions, at Cuieiras Biological Reserve, Manaus/ ZF2, km 34, in the Central Amazon, evaluating the soil attributes that may influence the permanence of soil carbon. Soil samples were collected along a transect of 850 m on topographic gradient Oxisol (plateau), Ultisol (slope) and Spodosol (valley). The stocks of soil carbon were obtained by multiplying the carbon content, soil bulk density and trickiness of soil layers. The watershed was delimited by using STRM and IKONOS images and the carbon contend obtained in the transects was extrapolated as a way to evaluate the potential for carbon stocks in an area of 2678.68 ha. The total SOC was greater in Oxisol followed by Spodosol and Ultisol. It was found direct correlations between the SOC and soil physical attributes. Among the clay soils (Oxisol and Ultisol), the largest stocks of carbon were observed in Oxisol at both the transect (90 to 175.5 Mg C ha-1) as the level of watershed (100.2 to 195.2 Mg C ha-1). The carbon stocks under sandy soil (Spodosol) was greater to clay soils along the transect (160-241 Mg C ha-1) and near them in the Watershed (96.90 to 146.01 Mg C ha-1).
Resumo:
The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
Areas under vinasse application have been associated to favorable physical conditions for root development, aeration, infiltration and water movement in soil profile. This study aimed to evaluate changes on physical attributes of soil under sugarcane straw after vinasse application in two sugarcane growing areas (Area 1 and Area 2) under mechanized management in the state of Paraíba, Brazil. In each area, the samples were collected in the 0-0.20, 0.20-0.40 and 0.40-0.60m layers of the soil, in 36 points, distributed in a 10×10m mesh, one day before and 40 days after vinasse application. The data were submitted to multivariate analysis with repeated measures and geostatistics. The vinasse application decreased soil density and increased total porosity in both Areas and increased organic matter in Area 2. In Area 1 occurred pure nugget effect for the fractions of sand, silt and clay, independent of soil layer. In Area 2, this effect was verified mostly at superficial layers, except for the fraction of clay that presented a moderate degree of spatial dependence.
Resumo:
The aim of this study was to evaluate chemical attributes alterations of a clay-loam textured soil and dry mass accumulation of maize submitted to application of cassava wastewater doses in three assessment periods. The experiment was conducted under greenhouse using a completely randomized experimental design in a factorial 5 × 3, with four replicates. The analyzed factors of research were doses of cassava wastewater (0; 12.6; 25.2; 50.4; 75.6 m3 ha-1) andassessment periods (20, 40 and 52 days after germination). The following parameters were determined: electric conductivity of soil saturation extract, pH in water, content of available P, content of exchangeable K+, Ca2+, Mg2+ and Na+of soil, dry mass of leaves and stem. The application of cassava wastewater on soil enables increase of pH, electric conductivity of saturation extract, contents of available P, contents of exchangeable K+ and Na+ and dry mass of leaves and stem. However, only pH and content of exchangeable K+ of soil, the electric conductivity of saturation extract and dry mass of leaves and stem are influenced by assessment period.
Resumo:
ABSTRACT The feasibility of using sewage wastewater as a water and nutrient source for plants is an alternative to harness agricultural natural resource, observing its influence on the organic matter dynamics and soil energy. Our objective here was to evaluate the effects of applying different doses of effluent from a sewage treatment plant, in Janaúba – MG, Brazil, over the physical attributes of a soil grown with “Prata Anã” banana. From soil sample collection at depths of 0-20, 20-40, and 40-60 cm, we determined the following soil properties: soil density, total porosity, macroporosity, microporosity, organic matter, clay dispersed in water and stability of soil aggregate. The experimental design was in randomized blocks with four repetitions. Wastewater raising doses promoted increase in suspended solids, contributing to macroporosity reduction at 20-40 and 40-60 cm depths; as well as a reduction in organic matter within 0-20 cm layer. Clay dispersal was observed in the depths of 0-20 cm, being derived from an increase in sodium content. Concurrently, there was a reduction of soil aggregate stability.
Resumo:
Soil properties can influence weed community composition and weed density agricultural area. Knowing this relationship would allow to choose the best strategy for the control of such plants. This study aimed to investigate the correlation between weed density and chemical and physical attributes of soil in three areas (UCO, USC, and UPA) for commercial sugarcane cultivation in Campos dos Goytacazes, RJ. Grids of 40 m x 40 m were established in the areas, and soil samples were collected at the intersection points for physical and chemical analysis and evaluation of the soil seed bank (SSB), followed by a phyto-sociological survey of the weeds present. Samples were collected during two periods: February/March and June/July, 2010. SSB presented the greatest number of species per vegetation evaluated in the two sampling periods. Clay content had a positive effect leading to greater weed density in all areas (UCO, USC and UPA) in at least one of the densities (0-10 and 10-20 cm). On the other hand, sand content, when significant, presented a negative correlation with plant density in all the SSB areas analyzed. The pH negatively influenced the density of the species found through the phyto-sociological survey at USC and UPA. Cyperus rotundus, dominant in all areas, correlated positively with phosphorus, potassium, and clay content and negatively with pH and high sand content.
Resumo:
Greenhouse studies were conducted in 2008-2009 with the objective of adjusting dose-response curves of the main soil-applied herbicides currently used in cotton for the control of Amaranthus viridis, A. hybridus, A. spinosus, A. lividus, as well as comparing susceptibility among different species, using the identity test models. Thirty six individual experiments were simultaneously carried out in greenhouse, in a sandy clay loam soil (21% clay, 2.36% OM) combining increasing doses of the herbicides alachlor, clomazone, diuron, oxyfluorfen, pendimethalin, prometryn, S-metolachlor, and trifluralin applied to each species. Dose-response curves were adjusted for visual weed control at 28 days after herbicide application and doses required for 80% (C80) and 95% (C95) control were calculated. All herbicides, except clomazone and trifluralin, provided efficient control of most Amaranthus species, but substantial differences in susceptibility to herbicides were found. In general, A. lividus was the least sensitive species, whereas A. spinosus demonstrated the highest sensitivity to herbicides. Alachlor, diuron, oxyfluorfen, pendimethalin, S-metolachlor, and prometryn are efficient alternatives to control Amaranthus spp. in a range of doses that are currently lower than those recommended to cotton.
Resumo:
Weeds interfere dramatically in the productive potential of cassava; however, information regarding herbicides that are selective to crops is still scarce. Thus, the aim in this study was to assess the initial growth of IAC 90 cassava plants after the application of sulfentrazone at different stages of germination of cassava in clayey and sandy soils. Three experiments were simultaneously deployed: the first experiment consisted in the application of sulfentrazone in the non-germinated stage of cassava cuttings; the second one in the stage of germinated cassavas cuttings (0.9 cm shoots); and the third one in applications in the stage of cassava cuttings with buds emerging (6.5 cm shoots and emerging from the soil). For each experiment the experimental design in randomized blocks was used in the 2 x 5 factorial arrangement with four replications. The factors were composed of two soils (sandy and clayey) and five doses of sulfentrazone (0, 250, 500, 750 and 1,000 g ha-1). It was found that depending on the herbicide dose, development stage of the buds of cassava cuttings and the type of soil, damage can occur in the initial development of the IAC 90 cassava plants. The greatest potential of sulfentrazone selectivity has occurred in applications in the non-germinated cassava cuttings stage and in doses lower than 500 g ha-1 in the clayey soil.
Resumo:
Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.
Resumo:
Humic substances isolated from soil organic matter had been used as stimulators of plant metabolism. Arabidopsis thaliana (L.) Heynh. with only five chromosomes, short cycle and size, is an important model to evaluate the physiological effects of these substances, which are qualitatively and quantitatively influenced by morphogenesis, mineralogy and chemistry of soils. The objective of this study was to evaluate the ambience effects on bioactivity of humic acids. A and B horizons of four typical soils of the North Fluminense were sampled. After isolation and purification, humic acids were applied to plants in increasing concentrations. The number and length of lateral roots and main root length were evaluated and, subsequently, the concentrations of maximum stimulation were determined by dose-response curves and regression equations. The results showed that more stable humic acids isolated from soil in less advanced stages of weathering, high activity clay and high base saturation resulted in better physiological stimulants for Arabidopsis.
Resumo:
Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.