156 resultados para pH-switchable polymer
Resumo:
A novel type of heavy metal adsorbent was prepared by the covalent grafting of thioglycolic acid molecules on a silica gel surface previsiouly modified with 3-aminopropyltrimethoxysilane. The amount of thioglycolic acid immobilized was 1.03 mmol per gram of silica. This material displayed a chelating moiety containing nitrogen, sulfur, and oxygen basic centers which are potentially capable of extracting from aqueous solutions cations such as Cu(II), Ni(II), Co(II), influenced by pH and ionic strength. This process of extraction was carried out by the batch method when similar chemisorption isotherms were observed for all cations. A modified Langmuir equation describes the experimental data.
Resumo:
This work describes novel materials based on pure iron oxide and iron oxide/niobia composite to produce a magnetic adsorbent. These materials were prepared with synthetic iron oxide and characterized by powder XRD, SEM, FTIR, TPR and Mössbauer spectroscopy. Results showed that the main iron oxides formed were goethite (aFeOOH) and maghemite (gFe2O3) with small particle size. The iron oxide and iron oxide/niobia composite showed high adsorption ability for organic compounds. The positive enthalpy indicated an endothermic adsorption process suggesting physical adsorption.
Resumo:
The Cd phytoavailability in sewage sludge-amended soils of different pHs using the 109Cd L-value isotopic method and Cd extracted by DTPA has been determined. Maize plants (Zea mais L.) were grown under greenhouse conditions in a xanthic ferralsol at different pHs amended with five sewage sludge (SS) rates, and labeled with 74 kBq kg-1 of 109Cd. The SS rates altered the properties of the soil chemicals and these influenced the isotopic parameter (L-value) and percent of Cd uptake by plants from soil (%Cdpdfs) and SS (%CdpdfSS). L-values and Cd extracted by DTPA correlate significantly with SS rates and Cd uptake by plants and are efficient for predicting the Cd phytoavailability in the sewage sludge-amended soil.
Resumo:
This work aimed to assess the photocatalytic degradation of a model odor compound (dimethyl disulfide, DMDS), found in liquid and gaseous wastes of plants for processing poultry byproducts. The effect of pH and temperature on adsorption and photocatalytic degradation was evaluated through factorial experimental designs. The results suggest the presence of an optimum region for adsorption, at 45.0 ºC and pH 4.0. In the photocatalytic runs an optimum for temperature and pH was also observed. At 45 ºC and pH 4.0 the removal of DMDS was 99% after 60 min of irradiation.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
A portable microcontrolled system is proposed to monitor conductivity, temperature and pH in on-line, in situ and remote way from a water reservoir faraway 200 m. The system comprises two modules: one for data reception (located in laboratory) and another for data acquisition/transmission (located near water reservoir). It uses a microcontroller and a transceiver to remote data transmission/reception by radio frequency. Variations of water parameters were simultaneously monitored without interruption during a period of ten hours with a relative error about 4.0 %. The developed system showed simple, stable, accurate, robust and low-cost to determine parameters of water in field.
Resumo:
Samples of Kaolin from different regions in Brazil were characterized by XRD, SEM and chemical analysis. A chemical bleaching study with pH adjustment was accomplished with the fractions below 37 μm, after classification by screening. The main objective was to evaluate the conditions of chemical bleaching that most increase the brightness of these kaolin's samples. Increases between 2.63 and 2.98% in the brightness (ISO) were observed after the chemical bleaching. We could say that the reduction of Fe3+ to Fe2+ during the chemical bleaching promoted an increase in the brightness, based on the Pourbaix Diagrams.
Resumo:
In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethyl)cellulose (EHEC) and mixed anionic surfactant sodium dodecanoate (SDoD)-sodium decanoate (SDeC) in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer) were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.
Resumo:
In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.
Resumo:
Drug-loaded films represent an alternative method for the treatment of skin lesions caused by Herpes simplex, since they facilitate delivery of the drug directly at the site of lesion. The objective of this work was to prepare PVA/PAA films containing AC at pH 2.0 and 4.0. The results show that the pH of the film preparations influences the polymer¾drug interaction kinetic order and the degree of swelling. The mechanism of release of AC from the films obtained at pH 4.0 was anomalous, whereas for the films prepared at pH 2.0 the release followed zero-order kinetics.
Resumo:
The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.
Resumo:
In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).
Resumo:
The nutritional and functional benefits offered by whey protein α-lactalbumin justify the great interest in its manufacture in large quantities at a high purity level. Hydroxyapatite is a calcium phosphate material able to adsorb proteins and can be synthesized at low production cost. Therefore, this work evaluated the adsorption of α-lactalbumin on hydroxyapatite using solid-liquid phase equilibrium data reported as adsorption isotherms. Van't Hoff's thermodynamics analysis showed that the adsorption process is entropically driven.
Resumo:
This article reports the use of polyaniline (PAni), chemically and electrochemically synthesized, for copper removal from aqueous solutions. PAni films were electrodeposited on reticulated vitreous carbon (RVC). In all cases, p-toluenesulfonate anion (PTS-) was used as the dopant to obtain cation exchange properties. RVC/PAni showed no expressive copper removal due to the small amount of polymer in the film. Chemically synthesized PAni-PTS- was obtained in its reduced form (leucoesmeraldine). PAni degraded at neutral pH but remained stable at low pH, showing a very high ion-exchange capacity, which is superior to those observed for commercial resins.
Resumo:
It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.