86 resultados para membrane diffusion
Resumo:
Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.
Resumo:
Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.-) generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA), gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM) on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively). The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.
Resumo:
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
The transient receptor potential channels family (TRP channels) is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids) have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
Reports remain insufficient on whether and how prostate-specific membrane antigen (PSMA) can influence in vivo osseous metastasis of prostate cancer (PCa). In the present study, the authors induced stable expression of PSMA in mouse PCa cell line RM-1. In vivo osseous metastasis was induced in 37 6-week-old female C57BL/6 mice weighing 22.45 ± 0.456 g. RM-1 cells were actively injected into the femoral bone cavity, leading to bilateral dissymmetry of bone density in the femoral bone. Tumor cells were also detected in bone tissue by pathological examination. The impact on bone density was demonstrated by the significant difference between animals injected with RM-PSMA cells (0.0738 ± 0.0185 g/cm²) and animals injected with RM-empty plasmid cells (0.0895 ± 0.0241 g/cm²). The lytic bone lesion of the RM-PSMA group (68.4%) was higher than that of the control group (27.8%). Immunohistochemistry showed that the expression of both vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) was distinctly higher in the RM-PSMA group than in the control group, while ELISA and Western blot assay indicated that VEGF and MMP-9 were higher in the RM-PSMA group compared to the control group (in vitro). Thus, the present study proposed and then confirmed for the first time that PSMA can promote in vivo osseous metastasis of PCa by increasing sclerotic destruction of PCa cells. Further analyses also suggested that PSMA functions positively on the invasive ability of RM-1 by increasing the expression of MMP-9 and VEGF by osseous metastases in vivo
Resumo:
The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.
Resumo:
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.