88 resultados para litter mixture
Resumo:
The author proposed a new modification on the thiocyanate-stannous chloride method for the determination of molibdenum, when is used a heavier-than-water solvent for extrating the colored molybdenum thiocyanate complex. Carbon tetrachloride - butyl alcohol is the mixture proposed, and the results obtained give a good precision and more sensibility than the other method that use carbon tetrachloride-isoamyl alcohol as extractant.
Resumo:
The comparative response of three sorghum (E-57, TEY 101 and C- 102) and of three corn cultivars (HMD-7974, Centralmex and Piranão) to N, P and K applications was studied in a soil from Anhembi, SP, classifield as Distrophic quartz sand (AQd) was studied. Leaf analyses were made to assess the nutritional status of the two crops. Main conclusions were the following. 1. Sorghum yieldel more than corn; 2. Both sorghum and corn varieties showed different capacities to absorb N, P and K from the soil and to fertilizer application; 3. There was no response to K2O fertilization; 4. Only Piranão increased yield when suplemented with a mixture of micronutrientes; 5. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 6. Direct relationships between rates of N and P2O5 and yield and leaf content were found; 7. The following leaf levels were considered to be adequate, respectively for sorghum and corn: N - 2,00 - 2,25%, 3,25 - 3,50%; P - 0,30 - 0,40, 0,45 - 0,50; K -2,00 - 2,50, 2,20 - 2,40%; Ca - 0,20 - 0,40, 0,44- 0,72% Mg - 0,25 - 0,40, 0,34 - 0,60%; S - 0,50 - 0,70, 0,72 -0,80; Cu - 7 - 10, 11 - 15%; Fe - 84 - 170, 98 - 125%; Mn - 58 - 72, 66 - 85%; Zn - 10 - 14, 18 - 22; critical levels, however, do very depending upon cultivar.
Resumo:
The reproduction of Bothrops jararaca (Wied, 1824) in captivity in ordened to determine the intercourse period, births, number of neonates, proportion of males and females per litter were performed between 1989 and 1999. Fifty eight females were observed, 16 intercourses in captivity, 45 females arrived already fertilized from nature and 53 litters, resulting on the birth of 426 live neonates, 67 infertile egg masses, 18 stillborn neonates and 4 abnormal neonates. The intercourse period was from february to december and the births happened between february and may. From the two gestacional periods observed, the shortest one was 152 days and the longest 239. The average amount of live neonates per litter was 8,04. Among 323 neonates, 47,68% were males and 52,32% were females. During the first year of life, 75,71% of the females and 71,54% of the males died, and 2,31% of the females and 0,81% of the males reached the fifth year of life.
Resumo:
In May 1987, a female of Bothrops jararaca (Wied, 1824), from Carazinho, Rio Grande do Sul (RS), Brazil, was placed in the same vivarium with a male of Bothrops neuwiedi Wagler, 1824 coming from Guaíba, RS. There, they stayed for aproximately ten months. In March 1988, it was observed a delivery of five live and two still born, among them six presented morphologic characteristics of B. neuwiedi and one of B. jararaca. After the female died, in April 1988, through necropsy, two fetusus were found, one near the cloaca and, both identified as B. neuwiedi. The morphologic analysis and the origin of the progenitors suggest the hypothesis that the litter was resulted of cross-breeding.
Resumo:
Five new species of Nesticus Thorell, 1869 are described: N. potreiro, N. taim from southern Brazil; N. brignolii from southern Brazil, Argentina and Uruguay; N. calilegua from southern Brazil and Argentina and N. ramirezi, from Argentina. The male palpus and female epyginum of N. brasiliensis Brignoli, 1979 are illustrated. Described species were collected in epigean habitats, in shrubs, leaf-litter, under stones, bricks, tiles or debris.
Resumo:
The genus Envia, comprising only the new species Envia garciai, is proposed. These small mygalomorph spiders were abundantly collected in soil cores and litter samples in primary rain forests near Manaus, Amazonas, Brazil.
Resumo:
The abundance of soil microarthropods from seven fragments of Araucaria Forest, Muitos Capões, Rio Grande do Sul, Brazil, was compared. The size of the fragments ranged from 0.25 ha to 35 ha, the two largest fragments are situated within the Aracuri Ecological Station and the remaining five are situated in a cattle ranching farm. In June 2000, three plots (10 m x 10 m) were established in the central area of each patch, and three soil cores (7 cm diameter x 6 cm deep) were taken per plot. The abundance of microarthropods in the upper six centimeters (soil + litter) varied between 63209 and 102704 ind.m-2, with oribatid mites (Acari, Cryptostigmata) being dominant in all fragments (between 46.9 % and 61.3 % of total individuals). Most microarthropod groups presented a decrease in abundance with decreasing fragment area, with a statistically significant difference between smaller and larger fragments. The proportion of oribatids also decreased with decreasing fragment area. The results suggest that the growing fragmentation process of Araucaria forests in southern Brazil, associated to a tendency for reducing the size of remnant fragments, can affect the abundance of soil microarthropods, and therefore, the quality and health of this ecosystem.
Resumo:
The taxonomic composition, observed and estimated species richness, and patterns of community structure of arboreal spider assemblages in eleven sites surrounding the "Banhado Grande" wet plain in the state of Rio Grande do Sul, Brazil, are presented. These sites represent three different vegetational types: hillside (four sites), riparian (five sites) and flooded forests (two sites). The spiders were captured by beating on foliage and "aerial litter". A sample was defined as the result of beating on twenty bushes, tree branches or "aerial litter" clusters, which roughly corresponds to one-hour search effort per sample. Fifty five samples (five per site) were obtained, resulting in an observed richness of 212 species present as adult or identifiable juveniles. The total richness for all samples was estimated to be between 250 (Bootstrap) to 354 species (Jackknife 2). Confidence intervals of both sample and individual-based rarefaction curves for each vegetation type clearly indicated that flooded forest is the poorest vegetation type with respect to spider species richness, with hillside and riparian forests having a similar number of species. The percentage complementarity between the eleven sites indicated that all sites contain a distinct set of species, irrespective of their vegetation types. Nevertheless, the spider assemblages in riparian and hillside forests are more similar with respect to each other than when compared to flooded forest. Both cluster and nonmetric multidimensional scaling analyses showed no strong correspondence between the spider arboreal fauna and the three vegetation types. Moreover, a Mantel test revealed no significant association between species composition and geographic distance among sites.
Resumo:
Leptodactylus(Lithodytes) lineatus (Schneider, 1799) is an Amazonian leaf litter frog considered rare or uncommon in several studies on anuran communities. Despite being a widely distributed frog in Amazonian forests, knowledge of the biology and ecology of this species is relatively scarce. This species has been reported to live in association with leaf-cutter ant nests (Atta spp.) during the breeding period. In this paper we present data on the seasonality of this species and some reproductive information gathered at a locality of Rondônia state, northwestern Brazil. Field work was carried out between April 2001 and March 2002, with the use of pitfall traps with drift fences as a survey method. Leptodactylus (L.) lineatus had a higher capture frequency in this locality compared to that of other studies carried out in other Amazonian localities, possibly because this species has secretive habits, such as calling and breeding from nests of leaf-cutting ants, and are difficult to find during visual encounter surveys. The breeding period occurs between October and March. Calling males and egg-bearing females were found between September and February and juvenile recruitment occurred mainly from the end of the rainy season to the beginning of the dry season (February to June). Males and females show sexual dimorphism in SVL, females being significantly larger than males. The number of ovarian eggs per female varies from 110 to 328 and analyses indicate that there is a significant correlation with SVL.
Resumo:
This paper analyses the relationship among mesohabitat and aquatic oligochaete species in the Galharada Stream (Campos do Jordão State Park, state of São Paulo, Brazil). Between August 2005 and May 2006 a total of 192 samples were obtained in areas of four different mesohabitats: riffle leaf litter (RL), pool leaf litter (PL), pool sediment (PS) and interstitial sediment from rocky beds in riffle areas (IS). In the mesohabitats sampled, 2007 specimens were identified, belonging to two families (Naididae and Enchytraeidae). Among the oligochaetes identified Naididae was represented by six genera (Allonais, Chaetogaster, Nais, Pristina, Aulodrilus and Limnodrilus). Principal components analysis (PCA) revealed the first two axes explained 85.1% of the total variance of the data. Limnodrilus hoffmeisteri Claparede, 1862 and Aulodrilus limnobius Bretscher, 1899 were associated with the pool areas (PL and PS). Most species of genera Pristina and Nais demonstrated apparent affinity with the riffle mesohabitats. The Indicator Species Analysis (IndVal) revealed that Nais communis Piguet, 1906, Pristina leidyi Smith, 1896 and Pristina (Pristinella) jenkinae (Stephenson, 1931) are indicative of RL mesohabitat, while family Enchytraeidae was considered indicative of PL mesohabitat.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
The localization of the xanthine oxidase (X.O.) and xanthine dehydrogenase (X.D.) activities in rat liver have been studied using separation of cytoplasmic particles into fractions by differential centrifugation. The results clearly demonstrate that practically all the enzymic activity is present in the supernatant fluid corresponding to the cell sap containing the soluble proteins of the cell. No activity could be detected for the nuclear, mitocondrial and microsomal fractions. The enzymatic activity of the mixture of the four factions was 102 per cent of that of the original homogenate. The distribution of the xanthine dehydrogenase in the protein fractions of the rat serum was accomplished in preliminary experiments by means of 50% ammonium sulphate precipitation and subsequent dialysis against water. All enzymatic activity was confined to the globulin fractions of the serum. Paper electrophoresis was performed and the protein and lipoprotein fractions determined. A method for the localization of the X.D. activity in the protein fractions separated by paper electrophoresis was developed. The results obtained suggest that xanthine dehydrogenase is localized in the globulin fractions possessing mobilities of [alpha 1], [beta] and [gamma] globulins and are probably bound to the lipoproteins.
Resumo:
The engineers of the modern University City are constructing a graceful bridge, named PONTE OSWALDO CRUZ, that crosses a portion of the Guanabara Bay (Fig. 1). The work at west pillar stopped for 3 years (The concret structure in Est. 1). As it will be seen from n.º 1 5 of the fig. 1, Est. I, the base of the structure will have five underground boxes of reinforcement, but, to-day they are just like as five uncovered water ponds, until at present: May 1963. (Est. I fig. 3, n.º 3 pond n.º 3; A. old level of the water; B. actual level of the water; c. green water; E. mass of bloom of blue algae Microcystis aeruginosa). Soon after SW portion, as 5 cells in series, of the pillar abutments, and also the NE portion nearly opposite in the Tibau Mount will be filled up with earth, a new way will link Rio City and the University City. We see to day Est. I, fig. 1 the grasses on the half arenous beach of the Tibau Point. These natural Cyperaceae and Gramineae will be desappear because of so a new road, now under construction, when completed will be 33 feet above the mean sea level, as high as the pillar, covering exactly as that place. Although rainfall was the chief source of water for these ponds, the first water (before meterorological precipitations of whatever first rain it might fall) was a common tap water mixed with Portland Cement, which exuded gradually through the pores of the concret during its hardenning process. Some data of its first cement water composition are on the chemical table, and in Tab. n.º 4 and "Resultado n.º 1". The rain receiving surface of each pond were about 15 by 16 feet, that is, 240 square feet; when they were full of water, their depth was of 2 feet 3", having each pond about 4,000 gallons. Climatic conditions are obviously similar of those of the Rio de Janeiro City: records of temperature, of precipitation and evaporation are seen on the graphics, figs. 2, 3, 4. Our conceptions of 4 phases is merely to satisfy an easy explanation thus the first phase that of exudation of concrete. We consider the 2nd. phase formation of bacterian and cyanophycean thin pellicel. 3rd. phase - dilution by rains, and fertilisation by birds; the 4th phase - plankton flora and fauna established. The biological material arrived with the air, the rains, and also with contaminations by dusts; with big portion of sand, of earth, and leaves of trees resulted of the SW wind actions in the storming days (See - Est. I, fig. 3, G. - the mangrove trees of the Pinheiro Island). Many birds set down and rest upon the pillar structure, its faeces which are good fertilizers fall into the ponds. Some birds were commonly pigeons, black ravens, swallows, sparrows and other sea mews, moor hens, and a few sea birds of comparatively rare occurence. We get only some examples of tropical dust contaminated helioplankton, of which incipient observations were been done sparcely. See the systematic list of the species of plankters. Phytoplankters - Cyanophyta algae as a basic part for food of zooplankters, represented chiefly by rotiferse, water-fleas Moinodaphnia and other Crustacea: Ostracoda Copepoda and Insecta: Chironomidae and Culicidae larvae. The polysaprobic of septic irruptions have not been done only by heating in summer, and, a good reason of that, for example: when the fifth pond was in polysaprobic phase as the same time an alike septic phase do not happened into the 3rd. pond, therefore, both were in the same conditions of temperature, but with unlike contaminations. Among the most important aquatic organisms used as indicatiors of pollution - and microorganisms of real importance in the field of sanitary science, by authorities of renown, for instance: PALMER, PRESCOTT, INGRAM, LIEBMANN, we choose following microalgae: a) The cosmopolite algae Scenedesmus quadricuada, a common indicator in mesosaprobio waters, which lives between pH 7,0 and it is assimilative of NO[3 subscripted] and NH[4 subscripted]. b) Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c) Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis) when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d) Analcystis cyanea (= M. aeruginosa) as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e) Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f) As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent). The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L. In these ponds Asplanchna lived in 0,2 P.PO[4 subscripted]. (Remember the hydobiological observations foreign to braslian waters refer only from 0.06 to 0,010 mg. L. P.PO[4 subscripted]; and they refer resistance to 0.8 N.NH[4 subscripted]). By our data, that rotiger resist commonly to 1.2 until 1.8 mg. L.N.NH[4 subscripted]; here in our ponds and, when NO[2 subscripted] appears Asplanchna desappears. It may be that Asplanchna were devoured by nitrite resistant animals of by Culicidae or other mosquitoes devoured by Due to these facts the number and the distribution of Asplanchna varies considerabley; see - plates of plankton successions. g) Brachionus one of the commonest members of class Rotatoria was frquently found in abundance into the ponds, and we notice an important biological change produce by the rotifer Brachonus colyciflorus: the occurence of its Brachionus clayciflorus forms pallas, is rare in Brazil, as we know about this. h) When we found the water flea MOinodaphnia we do not record simultanous presence of the blue algae Agmenellun (= Merismopedia).