107 resultados para ionization constants
Resumo:
The pKa values of the 6-[2´-(6´-methyl-benzothiazolylazo)]-1,2-dihydroxy-3,5-benzenedisulfonic acid (Me-BDBD) have been determined at 25 °C, in 0.10 mol L-1 NaCl medium by spectrophotometric method. The SQUAD computer program was used to process experimental data in pH range 1.78 - 11.54 and 290 - 720 nm. The pKa values obtained were 4.60 ± 0.04 and 9.48 ± 0.02. The Me-BDBD reagent was applied as indicator in titration of acid-base. The results were compared with phenolphthalein and bromocresol green indicators. Statistical t and F tests indicated that there were no statistically significant differences between the results for indicators with good agreement.
Resumo:
A gas chromatographic method has been developed for the assay of fluvastatin sodium (FLU). FLU was silylated with N,O-bis(trimethylsilyl)trifluoroacetamide-1% trimethylchlorosilane at 90 ºC for 30 min and analysed in a DB-1 column by capillary gas chromatograph with a flame ionization detector. The method was validated. The assay was linear over the concentration range at 10.0 to 50.0 µg mL-1. The limit of detection and the limit of quantitation were 1.0 and 3.0 µg mL-1, respectively. The recoveries of FLU derivatives were in the range of 99.25-99.80%. In inter-day and intra-day analysis, the values of relative standard deviation (%) and the relative mean error (%) were found between 0.20-0.80% and -0.20-0.75%, respectively. The developed method was succesfully applied to analyze the FLU content in tablet formulation. The results were statistically compared with those obtained by the official method, and no significant difference was found between the two methods. Therefore, it can be recommended for the quality control assay of FLU in pharmaceutical industry.
Resumo:
The aim of this study was to validate a method for the determination of acethaldehyde, methanol, ethanol, acetone and isopropanol employing solid-phase microextraction associated to gas chromatography with flame ionization detection. The operational conditions of SPME were optimized by response surface analysis. The calibration curves for all compounds were linear with r² > 0.9973. Accuracy (89.1-109.0%), intra-assay precision (1.8-8.5%) and inter-assay precision (2.2-8.2%) were acceptable. The quantification limit was 50 µg/mL. The method was applied to the meaurement of ethanol in blood and oral fluid of a group of volunteers. Oral fluid ethanol concentrations were not directly correlated with blood concentrations.
Resumo:
Different methods to determine total fat (TF) and fatty acids (FA), including trans fatty acids (TFA), in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID), in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05) and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.
Resumo:
Coal fly ash, a waste generated in a coal-fired electric power plant, was used to synthesize zeolite by hydrothermal treatment with NaOH solution. This zeolite was used as adsorbent to investigate the adsorption kinetics and isotherm parameters of the reactive orange 16 (RO16) dye from aqueous solutions at different concentrations (1.3-15.4 mg L-1). Three kinetic models, the pseudo-first-order, second-order, and intraparticle diffusion were used to predict the adsorption rate constants. The kinetics of adsorption of the RO16 dye followed pseudo-second-order kinetics. The adsorption isotherm data were closely fitted to the Langmuir equation. Keywords: coal fly ash; zeolite; reactive dye adsorption.
Resumo:
The presence of non-aqueous phase liquids (NAPLs) in the subsurface is a threat to public health as well as a serious environmental issue. NAPLs may remain adsorbed or form lenses floating on aquifers causing long-term contaminations. Surfactants may increase NAPLs solubility, enhancing the pump-and-treatment performance. Size, shape, hydration and ionization degree of the micelles define the affinity and the space available for the solubilization of a particular contaminating agent. The tests carried out at laboratory scale, taking into account the NAPL to be removed and the medium characteristics were useful to select surfactants and evaluate their efficiency as NAPLs solubilizers.
Resumo:
This work shows results on the characterization, by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-IT-TOF-MS) with electrospray ionization, of organic compounds present in raw and treated effluents from a combined sewage treatment systems (upflow anaerobic sludge blanket-trickling filter). The sewage samples were prepared by C18 solid phase extraction and the spectra obtained from the various extracts were submitted to principal component analysis to evaluate their pattern and identify the major deprotonated species. Some target compounds were submitted to semiquantitative analysis, using phenolphtalein as internal standard. The results showed the anaerobic step had little impact on the removal of anionic surfactants (LAS), fatty acids, and some contaminantes such as bisphenol A and bezafibrate, whereas the aerobic post-treatment was very efficient in removing these organics.
Resumo:
The electronic, structural properties and elastic constants of the wurtzite phase of zinc oxide, ZnO, was investigated using computer simulation at Density Functional Theory level, with B3LYP hybrid functional and Hartree-Fock methodology. The electronic properties as well the band energy was investigated through the analysis of the band structures and density of states (DOS), and the mechanical properties was studied through the calculus of the elastic constants C11, C33, C44, C12 e C13. The results are in good agreement with experimental data found in the literature and in accordance with results obtained by another theoretical methodology.
Resumo:
Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron transfer, from the peroxide intermediate to the activator, in its chemiexcitation step. Relative catalytic rate constants and singlet quantum yields were obtained for the peroxyoxalate reaction, using 9-chloro, 9,10-dichloro, 9-cyano and 9,10-dicyanoanthracenes as activators. The linear free-energy correlation of the relative rate constants with the activators' reduction potentials and the dependence of the quantum yields on the released energy confirm, for the first time, the occurrence of this inverse electron transfer.
Resumo:
The electrochemistry of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2- b]furan-4,5-dione ([Q]-PhNO2), on mercury was investigated. The first peak is consistent with a quasi-reversible one-electron reduction of the ortho-quinone, forming [Q-]-PhNO2, while the second one, bielectronic, corresponds to the simultaneous reduction of the latter radical to a dianion and the nitro group to a nitro radical anion. The second order rate constant, k disp, for the decay of [Q-]-PhNO2 is 15.188 x 10³ ± 827 mol"1 L s"1 and the t1/2 equals 0.06 s. E¹7Ic values for [Q]-PhNO2 and its precursor, nor-β-lapachone, are similar. The ease of semiquinone generation and its stability are parameters statistically relevant in the correlation biochemical/theoretical aspects.
Resumo:
The concentration of 14 organic acids of 50 sugarcane spirits samples was determined by gas chromatography using flame ionization detection. The organic acids analytical quantitative profile in stills and column distilled spirits from wines obtained from the same must were compared. The comparison was also carried in "head", "heart" and "tail fractions of stills distilled spirits. The experimental data were analyzed by Principal Components Analysis (PCA) and pointed out that the distillation process (stills and column) strongly influences the lead spirits' organic acid composition and that producers' operational "cuts off" to produce "tail", "heart" and "head", fractions should be optimized.
Resumo:
The present paper describes the effect of metals ions on the in vitro availability of enoxacin (a second generation quinolone antibiotic) owing to drug-metal interaction. These interaction studies were performed at 37 °C in different pH environments simulating human body compartments and were studied by UV spectroscopic technique. In order to determine the probability of these reactions different kinetic parameters (dissolution constants (K) and free energy change (ΔG)) for these reactions were also calculated. It is proposed that the structure of enoxacin contains various electron donating sites which facilitate its binding with metallic cations forming chelates. Hence taking food products, nutritional supplements or multivitamins containing multivalent cations at the same time as enoxacin, could reduce the absorption of the drug into the circulation and thus would decrease the effectiveness of the drug. In addition, the MIC of enoxacin for various microorganisms before and after interaction with metal ions was calculated which in most cases was increased which possibly could impair the clinical efficacy of the drug.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
The kinetics of biodegradation by the fungus Ganoderma sp of textile dyes Yellow, Blue and Red Procion were studied in effluents using UV-Vis spectroscopy, Partial Least Squares Regression (PLS) and univariate analysis. The kinetic of the reactions were founded intermediate between first and second orders and the rate constants were calculated. The biodegradation after 72 h at 28 ºC were 33.6, 43.5 and 57.7% for the dyes Yellow, Blue and Red Procion, respectively. The quantitative analysis of the effluent by HPLC method can not be used without previous separation.
Resumo:
Hydrophobically modified O-carboxymethylchitosan derivatives were synthesized through a reaction with lauroyl chloride and applied for adsorption of congo red dye. The Langmuir-Freundlich isotherm model was found to be the most suitable one for the VC adsorption and maximum adsorption capacity obtained was 281.97 mg g-1 at a pH value of 7.0 for HL 1.0. The adsorption process follows the pseudo-second-order kinetics and the corresponding rate constants were obtained. The thermodynamic parameters showed that adsorption process is spontaneous (positive ∆Hº) and favorable (negative ∆Gº). The hydrophobic derivatives are able to adsorb the dye even in high pH values.