175 resultados para inhibited enzyme electrode
Resumo:
In this study, nine organic sediment samples from a medieval archaeological site at Pineuilh, France, were examined for Giardia intestinalis using two commercially available immunological kits [enzyme-linked immuno sorbent and immunofluorescence (IFA) assays]. Both techniques detected G. intestinalis in one sample, dated to 1,000 Anno Domini. This is the first time IFA was successfully used to detect protozoa in Old World archaeological samples. Such immunological techniques offer important perspectives concerning ancient protozoa detection and identification.
Resumo:
To improve the serodiagnosis of human toxocariasis, a sensitive and specific enzyme-linked immunoelectrotransfer blot (EITB-IgG) test was developed and evaluated using Toxocara canislarvae excretory-secretory antigens for detecting anti-Toxocara IgG antibodies. The EITB-IgG profile of toxocariasis was characterized by comparing 27 sera from patients with toxocariasis, 110 sera from healthy subjects and 186 sera from patients with other helminth diseases (ascariasis, ancylostomiasis, trichuriasis, enterobiasis, strongyloidiasis, hymenolepiasis, diphyllobothriasis, taeniasis, cysticercosis, hydatidosis and fascioliasis). Antigenic bands of 24, 28, 30, 35, 56, 117, 136 and 152 kDa were predominantly recognized in sera from all patients with toxocariasis. However, only bands of 24-35 kDa were highly specific for Toxocara infection (98.3%), whereas other antigenic bands observed displayed cross-reactivity. Additionally, when the results of the EITB-IgG test were compared to those of the ELISA-IgG test, a 100% concordance was observed for positive results in human toxocariasis cases. The concordance for negative results between the two tests for healthy subjects and patients with other helminth diseases were 96.3% and 53.7%, respectively, showing that the EITB-IgG test has a higher specificity than ELISA. In conclusion, the EITB-IgG test is a very useful tool to confirm the serological diagnosis of human toxocariasis.
Resumo:
Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, α1,2-mannosidases are present in the endoplasmic reticulum (ER) and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one α1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound α-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-α1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This α1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised α1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi α1,2-mannosidases and therefore, the processing of N-glycans by α1,2-mannosidases is similar to that present in lower eukaryotes.
Resumo:
Angiostrongylus costaricensis has a broad geographic distribution spanning from North to South America and the infections of vertebrates with this nematode can result in abdominal complications. Human infections are diagnosed by histological or serological methods because the isolation of larvae from feces is not feasible, as most parasites become trapped in intestinal tissues due to intense eosinophilic inflammation. Because A. costaricensis is difficult to maintain in the laboratory, an immunodiagnostic IgG enzyme-linked immunosorbent assay (ELISA) using antigens from the congeneric Angiostrongylus cantonensis species was evaluated against a panel of serum samples from patients who were histologically diagnosed with A. costaricensis infections. Sera from uninfected individuals and individuals infected with other parasites were used as controls. The sensitivity and specificity of the assay were estimated at 88.4% and 78.7%, respectively. Because the use of purified or cloned antigens has not been established as a reliable diagnostic tool, the use of heterologous antigens may provide a viable alternative for the development of an ELISA-based immunodetection system for the diagnosis of abdominal angiostrongyliasis.
Resumo:
The disappearance of lytic, protective antibodies (Abs) from the serum of patients with Chagas disease is accepted as a reliable indicator of parasitological cure. The efficiency of a chemiluminescent enzyme-linked immunosorbent assay based on a purified, trypomastigote-derived glycosylphosphatidylinositol-anchored mucin antigen for the serologic detection of lytic Abs against Trypanosoma cruzi was evaluated in a nonendemic setting using a panel of 92 positive and 58 negative human sera. The technique proved to be highly sensitive {100%; 95% confidence interval (CI) = 96-100} and specific (98.3%; 95% CI = 90.7-99.7), with a kappa score of 0.99. Therefore, this assay can be used to detect active T. cruzi infection and to monitor trypanosomicidal treatment.
Resumo:
Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.
Resumo:
The aim of this study was to evaluate an enzyme-linked immunoassay with recombinant rhoptry protein 2 (ELISA-rROP2) for its ability to detectToxoplasma gondii ROP2-specific IgG in samples from pregnant women. The study included 236 samples that were divided into groups according to serological screening profiles for toxoplasmosis: unexposed (n = 65), probable acute infection (n = 48), possible acute infection (n = 58) and exposed to the parasite (n = 65). When an indirect immunofluorescence assay forT. gondii-specific IgG was considered as a reference test, the ELISA-rROP2 had a sensitivity of 61.8%, specificity of 62.8%, predictive positive value of 76.6% and predictive negative value of 45.4% (p = 0.0002). The ELISA-rROP2 reacted with 62.5% of the samples from pregnant women with probable acute infection and 40% of the samples from pregnant women with previous exposure (p = 0.0180). Seropositivity was observed in 50/57 (87.7%) pregnant women with possible infection. The results underscored that T. gondii rROP2 is recognised by specific IgG antibodies in both the acute and chronic phases of toxoplasmosis acquired during pregnancy. However, the sensitivity of the ELISA-rROP2 was higher in the pregnant women with probable and possible acute infections and IgM reactivity.
Resumo:
Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.
Resumo:
The objective of this work was to investigate the influence of 1-methylcyclopropene (1-MCP) at 300 nL L-1 on activities of cell wall hidrolytic enzymes and pectin breakdown changes which Sapodilla (Manilkara zapota cv. Itapirema 31) cell wall undergoes during ripening. Sapodilla were treated with ethylene antagonist 1-MCP at 300 nL L-1 for 12 hours and then, stored under a modified atmosphere at 25º C for 23 days. Firmness, total and soluble pectin and cell wall enzymes were monitored during storage. 1-MCP at 300 nL L-1 for 12 hours delayed significantly softening of sapodilla for 11 days at 25º C. 1-MCP postharvest treatment affected the activities of cell wall degrading enzymes pectinmethylesterase and polygalacturonase and completely suppressed increases in beta-galactosidase for 8 days, resulting in less pectin solubilization. Beta-galactosidase seems relevant to softening of sapodilla and is probably responsible for modification of both pectin and xyloglucan-cellulose microfibril network.
Resumo:
ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb.) were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), cytosolic cio-aconitase (ACO), and isocitrate dehydrogenase (IDH) were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.
Resumo:
This report outlines the discovery, the design and development of new compounds, and, structure-activity relationships for this drug category. Updated approaches to planned syntheses of new worthy ACE-inhibitors are also exploited.
Resumo:
ELISAs have been applied to pesticide residue analysis due to their high sensitivity and selectivity. However, some ELISAs performance may be affected by matrix components. In this work, ELISA for carbaryl in water samples was checked for interference by naturally occurring fulvic acids. The results suggested that the high fulvic acid concentration (³30 mg L-1) and acidic pH conditions (pH 4.0) interfere with the signal detection decreasing the method sensitivity. A dilution of the samples and adjust to pH 8.0 are appropriate to minimize the matrix interferences in the ELISA method. Good correlation between ELISA and HPLC-DAD results was observed.
Resumo:
The aim of this work is to describe the recent area that it has been developed for the construction of amperometric sensors, with the purpose to make possible a more effective electron transfer between enzyme and electrode. The advances reported in the literature will be described, such as enzymatic configurations that can be mimic using the chemistry of the artificial enzymes.
Resumo:
Initially, all major factors that affect the rate of the AldH-catalyzed reaction (enzyme concentration, substrate concentration, temperature and pH) were investigated. Optimal activity was observed between pH values of 7.5 and 9.5 in the temperature range of 25 to 50 ºC. Kinetic parameters, such as Km (2.92 µmol L-1) and Vmax (1.33 10-2 µmol min-1) demonstrate a strong enzyme-substrate affinity. The sensors were based on screen-printed electrodes modified with the Meldola Blue-Reinecke salt (MBRS) combination. Operational conditions (NAD+ and substrate contents, enzyme loading and response time) were optimized. Also, two enzyme immobilization procedures were tested: entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) and crosslinking with glutaraldehyde. Chronoamperometry was employed to observe the biosensor responses during enzymatic hydrolysis of propionaldehyde and also to construct inhibition curves with maneb and zineb fungicides. Best results were found with the following conditions: [NAD+] = 0.25 mmol L-1; [propionaldehyde] = 80 µmol L-1; enzyme loading = 0.8 U per electrode; response time = 10 min, and inhibition time = 10 min. Current intensities around 103 ± 13 nA with the sensors and good stability was obtained for both immobilization procedures. Detection limits, calculated using 10% inhibition were 31.5 µg L-1 and 35 µg L-1 for maneb and zineb, respectively. Results obtained with other MBRS-modified electrodes consisting of mono and bi-enzymic sensors were compared. The ability to catalyze NADH oxidation by MB was also highlighted.
Resumo:
The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella.