93 resultados para heavy metals interaction
Resumo:
A sorption concentration method using impregnated silica has been developed to determine small concentration of lead in water by Atomic Absorption Spectrometry.
Resumo:
The need to clean-up heavy metal contaminated environment can not be over emphasized. This paper describes the adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions from aqueous solution using unmodified and EDTA-modified maize cob. Maize cob was found to be an excellent adsorbent for the removal of these metal ions. The amount of metal ions adsorbed increased as the initial concentration increased. Also, EDTA - modification enhanced the adsorption capacity of maize cob probably due to the chelating ability of EDTA. Among the three adsorption isotherm tested, Dubinin-Radushkevich gave the best fit with R² value ranging from 0.9539 to 0.9973 and an average value of 0.9819. This is followed by Freundlich isotherm (Ave. 0.9783) and then the Langmuir isotherm (Ave. 0.7637). The sorption process was found to be a physiosorption process as seen from the apparent energy of adsorption which ranged from 2.05KJ\mol to 4.56KJ\mol. Therefore, this study demonstrates that maize cob which is an environmental pollutant could be used to adsorb heavy metals and achieve cleanliness thereby abating environmental nuisance caused by the maize cob.
Use of modified silica gel for concentrating Pb (II) and Cd (II) occurring in form of complex anions
Resumo:
The performance of silica gel, modified by the impregnation with a high molecular weight quaternary amine (triethyl octadecyl ammonium iodide), used for the concentration of heavy metals occurring in water is studied. The material under study captures Cd, Pb, which are capable of forming stable complexes with I- ions.The results obtained about the metal capture, under dynamic conditions, are described and metal ions are removed by desorption with EDTA and quantified by AAS.
Resumo:
The present study sought to observe the behavior of soils in natural state and in mixtures, in different ratios, with the industrial solid residue called whitewash mud. The work was conducted with samples of typical soils from the region of Alagoinhas, Bahia-Brazil. Wet chemical analysis and atomic absorption spectrophotometry were used in order to obtain the classification of the industrial solid residue. Solubilization and leaching tests were performed and X-ray diffraction and electron microscopy techniques were carried out. The results showed that the whitewash mud was classified as non-inert, but with great capacity of heavy metal retention largely owed to the kaolinite and goethite presence in the clay fraction of the soils, making it difficult to have heavy metals readily available for exchange.
Resumo:
Plants respond to environmental adversities, becoming an indicator for assessing the environment quality. In this aspect, chlorophyll contents as well, carotenoids are used as a reliable indicator to associate environmental quality and pollution, mainly regarding the toxicity of heavy metals in higher plants. So, we aimed to evaluate the content of chlorophyll a, b, and total chlorophylls and carotenoids in plants vetiver [Vetiveria zizanioides (L.) Nash], maize (Zea mays L.) cv. AG 1051, sunflower (Helianthus annuus L.) cv. BRS 122/V-2000, and castor beans (Ricinus communis L. ) cv . Northeastern BRS grown in contaminated soil with lead, with and without correction of soil pH, so they were used as indicators of metal stress by the soil. From the biochemical point of view, the correction of soil pH values caused chlorophyll a, b and total statistically higher for vetiver species and castor beans in the analyzed periods, except for the analysis performed 60 days after transplanting where only the species vetiver benefited from the correction of soil pH on the content of chlorophyll b and total. On the other hand plants without correction of soil pH showed a decrease of all chlorophyll levels. In addition, the largest increase in the synthesis of carotenoids, indicated that under stress the plants have developed alternative routes of dissipation of energy in order to avoid problems of photo-inhibition and photo-oxidation.
Resumo:
Os objetivos deste trabalho foram quantificar o número de esporos e o número mais provável de propágulos infectivos de FMA em solos da mineradora Caraíba, verificando influências sazonais na dinâmica desses propágulos e determinando os efeitos da mineração sobre o potencial de infectividade micorrízica. Foram realizadas coletas de solo na estação seca (agosto/98) e na chuvosa (fevereiro/99), em seis sub áreas da mineradora de cobre: 1 - local onde é depositado o rejeito; 2 - arredores da área industrial; 3 - local onde são depositados restos de rocha com pouco minério; 4 - caatinga nativa, não impactada; 5 - interface entre a caatinga e o rejeito; 6 - local onde foi retirada a camada superficial do solo. Foram identificadas 32 espécies de plantas num raio de dois metros, a partir dos pontos de coleta de solo. Maior diversidade (21 espécies) foi encontrada na sub área 4 e menor (2 espécies) na sub área 3. As sub áreas 1, 3 e 5 apresentaram o menor número de esporos (< 1 por g de solo), possivelmente devido aos elevados valores de Cu e Fe e ao pH mais alcalino. Em geral a densidade dos esporos e o número de propágulos infectivos foram baixos (< 2 por g de solo). Não houve diferença significativa entre o número de esporos nas estações seca e chuvosa, a não ser para a sub área 6. Entretanto, houve variação entre as sub áreas, com diferenças significativas nas duas estações do ano.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
Regnellidium diphyllum has its distribution restricted to Southern Brazil and adjoining localities in Uruguay and Argentina. Currently it is on the list of threatened species of Rio Grande do Sul. The conversion of wetlands into agricultural areas or soil contamination by the introduction of waste products and fertilizers may compromise the establishment and survival of this species. Among the pollutants are heavy metals, such as cadmium (Cd). Megaspores were germinated in liquid culture medium, with concentrations 0 (control), 0.39; 0.78; 1.56; 3.12; 6.25; 12.5; 25; 50 and 100 mg L-1 of Cd, starting from a standard solution of Titrisol® at 1000 mg L-1. The increase of Cd in the growth medium to 50 mg L-1 resulted in low germinability (58%), and no germination was observed on 100 mg L-1. In apomictical sporophytes, the growth of primary root and leaf was significantly reduced and no secondary leaf was formed at Cd concentrations of 12.5 and higher than this. The results indicated that R. diphyllum is tolerant to the presence of Cd up to considerably higher concentrations (0.78 mg L-1) than that normally found in unpolluted aquatic ecosystems (0.01 mg L-1), although the sensitivity to higher concentrations might endanger the establishment and permanence of this species in habitats exposed to contamination with this metal.
Resumo:
We investigated the effectiveness of Nitroxin inoculation on lead (Pb) and nutrient uptakes by little seed canary grass. The factors tested included inoculation (or not) with Nitroxin and different soil concentrations of Pb (0, 200, 400 and 800mgPbkg-1 soil). Increasing soil concentrations of Pb decreased stem, leaf and root dry weights. Shoot phosphorus concentrations increased in parallel with increasing soil Pb concentrations. Nitroxin inoculation did not alter the phosphorus concentration of the roots. The Pb translocation factor was >1 in inoculated treatments in the Pb soil concentration range of 200 to 400mgkg-1; the translocation factor for 800mgPbkg‑1 with no inoculation of Nitroxin was, however, <1. Our results indicated that the Pb bioaccumulation factor for little seed canary grass was <1, indicating that it is a Pb excluding plant.
Resumo:
We studied the effects of chronic intoxication with the heavy metals lead (Pb2+) and zinc (Zn2+) on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05). In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05). Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05), an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.
Resumo:
The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26%) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively) in the Hg group, and Cu,Zn-SOD was lower (54%) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69%) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.
Resumo:
Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.
Resumo:
Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.
Resumo:
The elements called heavy metals when ingested are not completely eliminated from animal bodies and are responsible for chronic and acute intoxications. Sixty-three samples of beer, produced in the states of São Paulo, Paraná, Rio de Janeiro, Rio Grande do Sul, Minas Gerais, and Pará, were analysed for lead and cadmium content by atomic absorption spectrometry with graphite furnace atomization and Zeeman correction. The concentrations of Pb and Cd of dark differed significantly from light beers, being higher in the former. No significant difference was found between the beers produced in predominantly rural areas and the ones produced in industrialized areas. The concentrations of lead and cadmium in all samples were bellow the maximum accepted by present Brazilian regulations and ranged from not detected to 290mugPb/L and from not detected to 14.3mugCd/L. The average concentrations were 37mugPb/L and 1.6mugCd/L.
Resumo:
Pisciculture is an economic activity that is steadily growing in the state of Parana, Brazil, and Nile tilapia (Oreochromis niloticus) is one of the widely cultivated species in this state. Tilapia is not only a very nutritious food, but also an important indicator of environmental contamination. This study aimed to verify contamination by cadmium, copper and lead in tilapia fillets, and to compare the found values to international legislations. Were collected 135 samples of tilapia fillets, between July 2006 and May 2007, in three fish stores located in regions west and north of Paraná State. Samples of tilapia fillet were analyzed in relation to the presence of cadmiun, lead and copper, using atomic absorption spectrophotometry. Lead has not been detected in the analyses. Cadmium has been detected in three samples, on concentrations of 0.012 µg.g-1, 0.011 µg.g-1 and 0.014 µg.g-1. Copper has been detected in all fillets, and the average concentration of each cold storage plant was of 0.122 µg.g-1, 0.106 µg.g-1 and 0.153 µg.g-1. The concentrations found in this study are within the limits allowed by both the European and the Australian legislations.