108 resultados para fast transient kinetics
Resumo:
We report on an assay of direct transfer of DNA into calli and seeds of Racosperma (ex-Acacia) mangium, using a bioballistic method. We observed transient expression of the GUS gene in the treated tissues
Resumo:
It has been shown for several DNA probes that the recently introduced Fast-FISH (fluorescence in situ hybridization) technique is well suited for quantitative microscopy. For highly repetitive DNA probes the hybridization (renaturation) time and the number of subsequent washing steps were reduced considerably by omitting denaturing chemical agents (e.g., formamide). The appropriate hybridization temperature and time allow a clear discrimination between major and minor binding sites by quantitative fluorescence microscopy. The well-defined physical conditions for hybridization permit automatization of the procedure, e.g., by a programmable thermal cycler. Here, we present optimized conditions for a commercially available X-specific a-satellite probe. Highly fluorescent major binding sites were obtained for 74oC hybridization temperature and 60 min hybridization time. They were clearly discriminated from some low fluorescent minor binding sites on metaphase chromosomes as well as in interphase cell nuclei. On average, a total of 3.43 ± 1.59 binding sites were measured in metaphase spreads, and 2.69 ± 1.00 in interphase nuclei. Microwave activation for denaturation and hybridization was tested to accelerate the procedure. The slides with the target material and the hybridization buffer were placed in a standard microwave oven. After denaturation for 20 s at 900 W, hybridization was performed for 4 min at 90 W. The suitability of a microwave oven for Fast-FISH was confirmed by the application to a chromosome 1-specific a-satellite probe. In this case, denaturation was performed at 630 W for 60 s and hybridization at 90 W for 5 min. In all cases, the results were analyzed quantitatively and compared to the results obtained by Fast-FISH. The major binding sites were clearly discriminated by their brightness
Resumo:
To study the effect of halothane as a cardioplegic agent, ten Wistar rats were anesthetized by ether inhalation and their hearts were perfused in a Langendorff system with Krebs-Henseleit solution (36oC; 90 cm H2O pressure). After a 15-min period for stabilization the control values for heart rate, force (T), dT/dt and coronary flow were recorded and a halothane-enriched solution (same temperature and pressure) was perfused until cardiac arrest was obtained. The same Krebs-Henseleit solution was reperfused again and the parameters studied were recorded after 1, 3, 5, 10, 20 and 30 min. Cardiac arrest occurred in all hearts during the first two min of perfusion with halothane-bubbled solution. One minute after reperfusion without halothane, the following parameters reported in terms of control values were obtained: 90.5% of control heart rate (266.9 ± 43.4 to 231.5 ± 71.0 bpm), 20.2% of the force (1.83 ± 0.28 to 0.37 ± 0.25 g), 19.8% of dT/dt (46.0 ± 7.0 to 9.3 ± 6.0 g/s) and 90.8% of coronary flow (9.9 ± 1.5 to 9.4 ± 1.5 ml/min). After 3 min of perfusion they changed to 99.0% heart rate (261.0 ± 48.2), 98.9% force (1.81 ± 0.33), 98.6 dT/dt (45.0 ± 8.2) and 94.8% coronary flow (9.3 ± 1.4). At 5 min 100.8% (267.0 ± 40.6) heart rate, 105.0% (1.92 ± 0.29) force and 104.4% (48.2 ± 7.2) dT/dt were recorded and maintained without significant differences (P>0.01) until the end of the experiment. These data demonstrate that volatile cardioplegia with halothane is an effective technique for fast induction of and prompt recovery from normothermic cardiac arrest of the rat heart
Resumo:
The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes
Resumo:
The effects of dorsomedial hypothalamic (DMH) nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g). DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure). In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH) nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure). The medial hypothalamus (MH) was also lesioned separately using a nichrome electrode (0.3-mm tip exposure) with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v) plus phenol red dye (6 mg/dl) as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05) gastric emptying (24.7% gastric retention, N = 11) than control (33.0% gastric retention, N = 8) and sham-lesioned (33.5% gastric retention, N = 12) rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7) than control (33.4% gastric retention, N = 17) and VMH-lesioned (34.6% gastric retention, N = 7) rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7) than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for the DMH in the regulation of gastric motility
Resumo:
Recent technological developments have created new devices that could improve and simplify the construction of stimulus isolators. HEXFET transistors can switch large currents and hundreds of volts in nanoseconds. The newer opto-isolators can give a pulse rise time of a few nanoseconds, with output compatible with MOSFET devices, in which delays are reduced to nanoseconds. Integrated DC/DC converters are now available. Using these new resources we developed a new electrical stimulus isolator circuit with selectable constant-current and constant-voltage modes, which are precise and easy to construct. The circuit works like a regulated power supply in both modes with output switched to zero or to free mode through an opto-isolator device. The isolator analyses showed good practical performance. The output to ground resistance was 1011 ohms and capacitance 35 picofarads. The rise time and fall time were identical (5 µs) and constant. The selectable voltage or current output mode made it very convenient to use. The current mode, with higher output resistance values in low current ranges, permits intracellular stimulation even with tip resistances close to 100 megaohms. The high compliance of 200 V guarantees the value of the current stimulus. The very low output resistance in the voltage mode made the device highly suitable for extracellular stimulation with low impedance electrodes. Most importantly, these characteristics were achieved with a circuit that was easy to build and modify and assembled with components available in Brazil.
Resumo:
In the central nervous system, magnesium ion (Mg2+) acts as an endogenous modulator of N-methyl-D-aspartate (NMDA)-coupled calcium channels, and may play a major role in the pathomechanisms of ischemic brain damage. In the present study, we investigated the effects of magnesium chloride (MgCl2, 2.5, 5.0 or 7.5 mmol/kg), either alone or in combination with diazepam (DZ), on ischemia-induced hippocampal cell death. Male Wistar rats (250-300 g) were subjected to transient forebrain ischemia for 15 min using the 4-vessel occlusion model. MgCl2 was applied systemically (sc) in single (1x, 2 h post-ischemia) or multiple doses (4x, 1, 2, 24 and 48 h post-ischemia). DZ was always given twice, at 1 and 2 h post-ischemia. Thus, ischemia-subjected rats were assigned to one of the following treatments: vehicle (0.1 ml/kg, N = 34), DZ (10 mg/kg, N = 24), MgCl2 (2.5 mmol/kg, N = 10), MgCl2 (5.0 mmol/kg, N = 17), MgCl2 (7.5 mmol/kg, N = 9) or MgCl2 (5 mmol/kg) + DZ (10 mg/kg, N = 14). Seven days after ischemia the brains were analyzed histologically. Fifteen minutes of ischemia caused massive pyramidal cell loss in the subiculum (90.3%) and CA1 (88.4%) sectors of the hippocampus (P<0.0001, vehicle vs sham). Compared to the vehicle-treated group, all pharmacological treatments failed to attenuate the ischemia-induced death of both subiculum (lesion: 86.7-93.4%) and CA1 (lesion: 85.5-91.2%) pyramidal cells (P>0.05). Both DZ alone and DZ + MgCl2 reduced rectal temperature significantly (P<0.05). No animal death was observed after drug treatment. These data indicate that exogenous magnesium, when administered systemically post-ischemia even in different multiple dose schedules, alone or with diazepam, is not useful against the histopathological effects of transient global cerebral ischemia in rats.
Resumo:
We describe a new simple, selective and sensitive micromethod based on HPLC and fluorescence detection to measure debrisoquine (D) and 4-hydroxydebrisoquine (4-OHD) in urine for the investigation of xenobiotic metabolism by debrisoquine hydroxylase (CYP2D6). Four hundred µl of urine was required for the analysis of D and 4-OHD. Peaks were eluted at 8.3 min (4-OHD), 14.0 min (D) and 16.6 min for the internal standard, metoprolol (20 µg/ml). The 5-µm CN-reverse-phase column (Shimpack, 250 x 4.6 mm) was eluted with a mobile phase consisting of 0.25 M acetate buffer, pH 5.0, and acetonitrile (9:1, v/v) at 0.7 ml/min with detection at lexcitation = 210 nm and lemission = 290 nm. The method, validated on the basis of measurements of spiked urine, presented 3 ng/ml (D) and 6 ng/ml (4-OHD) sensitivity, 390-6240 ng/ml (D) and 750-12000 ng/ml (4-OHD) linearity, and 5.7/8.2% (D) and 5.3/8.2% (4-OHD) intra/interassay precision. The method was validated using urine of a healthy Caucasian volunteer who received one 10-mg tablet of Declinax®, po, in the morning after an overnight fast. Urine samples (diuresis of 4 or 6 h) were collected from zero to 24 h. The urinary excretion of D and 4-OHD, Fel (0-24 h), i.e., fraction of dose administered and excreted into urine, was 6.4% and 31.9%, respectively. The hydroxylation capacity index reported as metabolic ratio was 0.18 (D/4-OHD) for the person investigated and can be compared to reference limits of >12.5 for poor metabolizers (PM) and <12.5 for extensive metabolizers (EM). In parallel, the recovery ratio (RR), another hydroxylation capacity index, was 0.85 (4-OHD: SD + 4-OHD) versus reference limits of RR <0.12 for PM and RR >0.12 for EM. The healthy volunteer was considered to be an extensive metabolizer on the basis of the debrisoquine test.
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
GM1 gangliosidosis is an autosomal recessive disorder caused by the deficiency of lysosomal acid hydrolase ß-galactosidase (ß-Gal). It is one of the most frequent lysosomal storage disorders in Brazil, with an estimated frequency of 1:17,000. The enzyme is secreted and can be captured by deficient cells and targeted to the lysosomes. There is no effective treatment for GM1 gangliosidosis. To determine the efficiency of an expression vector for correcting the genetic defect of GM1 gangliosidosis, we tested transfer of the ß-Gal gene (Glb1) to fibroblasts in culture using liposomes. ß-Gal cDNA was cloned into the expression vectors pSCTOP and pREP9. Transfection was performed using 4 µL lipofectamine 2000 and 1.5-2.0 µg DNA. Cells (2 x 10(5)/well) were harvested 24 h, 48 h, and 7 days after transfection. Enzyme specific activity was measured in cell lysate and supernatant by fluorometric assay. Twenty-four hours after transfection, treated cells showed a higher enzyme specific activity (pREP9-ß-Gal: 621.5 ± 323.0, pSCTOP-ß-Gal: 714.5 ± 349.5, pREP9-ß-Gal + pSCTOP-ß-Gal: 1859.0 ± 182.4, and pREP9-ß-Gal + pTRACER: 979.5 ± 254.9 nmol·h-1·mg-1 protein) compared to untreated cells (18.0 ± 3.1 for cell and 32.2 ± 22.2 nmol·h-1·mg-1 protein for supernatant). However, cells maintained in culture for 7 days showed values similar to those of untreated patients. In the present study, we were able to transfect primary patients' skin fibroblasts in culture using a non-viral vector which overexpresses the ß-Gal gene for 24 h. This is the first attempt to correct fibroblasts from patients with GM1 gangliosidosis by gene therapy using a non-viral vector.
Resumo:
We evaluated the recovery of cardiovascular function after transient cardiogenic shock. Cardiac tamponade was performed for 1 h and post-shock data were collected in 5 domestic large white female pigs (43 ± 5 kg) for 6 h. The control group (N = 5) was observed for 6 h after 1 h of resting. During 1 h of cardiac tamponade, experimental animals evolved a low perfusion status with a higher lactate level (8.0 ± 2.2 vs 1.9 ± 0.9 mEq/L), lower standard base excess (-7.3 ± 3.3 vs 2.0 ± 0.9 mEq/L), lower urinary output (0.9 ± 0.9 vs 3.0 ± 1.4 mL·kg-1·h-1), lower mixed venous saturation, higher ileum partial pressure of CO2-end tidal CO2 (EtCO2) gap and a lower cardiac index than the control group. Throughout the 6-h recovery phase after cardiac tamponade, tamponade animals developed significant tachycardia with preserved cardiac index, resulting in a lower left ventricular stroke work, suggesting possible myocardial dysfunction. Vascular dysfunction was present with persistent systemic hypotension as well as persistent pulmonary hypertension. In contrast, oliguria, hyperlactatemia and metabolic acidosis were corrected by the 6th hour. The inflammatory characteristics were an elevated core temperature and increased plasma levels of interleukin-6 in the tamponade group compared to the control group. We conclude that cardiovascular recovery after a transient and severe low flow systemic state was incomplete. Vascular dysfunction persisted up to 6 h after release of tamponade. These inflammatory characteristics may also indicate that inflammatory activation is a possible pathway involved in the pathogenesis of cardiogenic shock.
Resumo:
The autonomic nervous system plays an important role in physiological and pathological conditions, and has been extensively evaluated by parametric and non-parametric spectral analysis. To compare the results obtained with fast Fourier transform (FFT) and the autoregressive (AR) method, we performed a comprehensive comparative study using data from humans and rats during pharmacological blockade (in rats), a postural test (in humans), and in the hypertensive state (in both humans and rats). Although postural hypotension in humans induced an increase in normalized low-frequency (LFnu) of systolic blood pressure, the increase in the ratio was detected only by AR. In rats, AR and FFT analysis did not agree for LFnu and high frequency (HFnu) under basal conditions and after vagal blockade. The increase in the LF/HF ratio of the pulse interval, induced by methylatropine, was detected only by FFT. In hypertensive patients, changes in LF and HF for systolic blood pressure were observed only by AR; FFT was able to detect the reduction in both blood pressure variance and total power. In hypertensive rats, AR presented different values of variance and total power for systolic blood pressure. Moreover, AR and FFT presented discordant results for LF, LFnu, HF, LF/HF ratio, and total power for pulse interval. We provide evidence for disagreement in 23% of the indices of blood pressure and heart rate variability in humans and 67% discordance in rats when these variables are evaluated by AR and FFT under physiological and pathological conditions. The overall disagreement between AR and FFT in this study was 43%.