94 resultados para dipole-dipole interactions
Resumo:
Due to the increase of water deficiency in many farm regions and its meaning on weed interference, competitive interactions between soybean and three weeds were evaluated under water stress (20 to 40 days after transplanting) and no stress conditions. Three independent experiments were carried out in a growth chamber, being each one composed by the weeds Alternanthera tenella, Tridax procumbens or Digitaria ciliaris, along with the crop, in which soil water condition and plant composition effects were evaluated while in competition. A replacement series system was used, including both monoculture of each species and a mixture with a ratio of 50% between weed and soybean. A completely randomized design was used in factorial arrangement, with treatments distributed in three levels for plant composition factor (soybean and weeds monocultures, in addition to the soybean + weed mixture) and two levels for the water factor (with or without stress), amounting six treatments in each experiment. Soybean dry mass was higher than weed dry mass, when growing without water stress. However, under water stress conditions, the dry mass of soy was reduced in all experiments, mainly in the D. ciliaris comparative experiment. Water restriction was also significant in the plants' photosynthesis reduction in most of the experiments, reducing leaf area duration and efficiency of water use. Analysing all variables shows greater weed tolerance than soybean when submitted to water deficit and with distinct changes of their interactions and mechanism of competition, in each experiment.
Resumo:
The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area.
Resumo:
During the period from 1992 to 1997, interactions of several organisms and Ficus eximia figs, a monoecious species, were studied in plants located in Campinas/SP and Londrina/PR (Brazil). Ficus eximia is pollinated by a single fig wasp species, Pegoscapus sp. (Hymenoptera: Agaonidae, Agaoninae), but also visited by other 14 non-pollinating wasps (Agaonidae, Eurytomidae, Torymidae). Mites (Tarsonemidae), nematodes (Diplogasteridae) and fungi which use the body of the pollinating fig wasp to disperse themselves were also observed.
Resumo:
Green algal species and their association with physicochemical parameters in some manmade ponds in Zaria, Nigeria were studied from November 2005 to August 2006. Phytoplankton and water samples were collected, preserved and analyzed using standard methods. A total of 27 green algal species divided into 16 families were recorded. Shannon diversity indices ranged from 1.75 to 2.39 in all ponds, dominance index from 0.14 to 0.23 and species evenness 0.56 to 0.64. Closterium sp. and Rhizoclonium hookeri Kuetz. were positively associated with the concentration of Fe, however they were negatively correlated (sensitive) to alkalinity, total dissolved solids and electrical conductivity. Stichococcus bacillaris Naegeli, Staurastrum rotula Nordst. and Sphaeroplea sp. had significant positive relationship with biochemical oxygen demand (BOD), Mn, and Mo levels in the water. Pseudouvella americana (Snow) Wille. and Scenedesmus quadricauda (Turp.) de Bréb. showed a close positive association with alkalinity but were sensitive to Fe, BOD, Mn and Mo. The species reported here showed closed association with physicochemical factors in these ponds.
Resumo:
Three egg-type stocks segregating dwarf (dw) and bantam (dwB) genes in female progeny were produced from the same 18 heterozygous (dwB/dw) sires used to inseminate dams of three different genotypes: normal (dw+), dwarf (dw) and bantam (dwB) dams. The heritability of 8-week body weight estimated from full-sibs of the same phenotype of progeny was 0.40, and that estimated from paternal half-sibs of the same phenotype (dwarf or bantam), and from the same genotype of dam was 0.38. Therefore, maternal and non-additive effects within genotypic classes of dam made little contribution to the genetic variance for 8-week body weight among their progeny. The interaction of sires (S) with genotypes (dw+, dw and dwB) of dam (G) was significant at the 5% level. This indicates that the rankings of the sires within each one of the three genotypes of dam were not the same, probably due to non-additive genetic variation among genotypes of dams. The evidence indicated that in general the genes from individual sires combined differently with each type of dam (G). Those genes which combined well with the genes from normal (dw+) dams combined poorly with both the genes from the dwarf (dw) and the genes from the bantam (dwB) dams. The interaction of sires (S) with phenotypes (dwarf and bantam) of progeny (P) was significant at the 10% level. The results indicated a probable gene x genotype interaction for 8-week weight between genes at the dwarf locus (dw and dwB) and the background genotype (single and/or polygenes). The correlation among paternal half-sibs was influenced more by the S x G than by the S x P interaction, but the effects tended to be cumulative
Resumo:
(ANP, 1 µM) on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interaction of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED) and late (LD) distal tubules in rats during in vivo stopped-flow microperfusion experiments. The intratubular pH was measured with a double-barreled microelectrode with H+-sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81%) and LD (54%) segments via activation of AT1 receptors, as well as vacuolar H+-ATPase in LD segments (33%). ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of action of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluorescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 µM) alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM), and inhibition of H+ extrusion at higher ANG II levels (100 nM). To obtain more information on the mechanism of interaction of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension. The data indicate that the addition of increasing concentrations of ANG II (1 pM to 1 µM) to the cell suspension led to a progressive increase in [Ca2+]i to 2-3 times the basal level. In contrast, the addition of ANP (1 µM) to the cell suspension led to a very rapid 60% decrease in [Ca2+]i and reduced the increase elicited by ANG II, thus modulating the effect of ANG II on [Ca2+]i. These results may indicate a role of [Ca2+]i in the regulation of the H+ extrusion process mediated by Na+/H+ exchange and stimulated/impaired by ANG II. The data are compatible with stimulation of Na+/H+ exchange by increases of [Ca2+]i in the lower range, and inhibition at high [Ca2+]i levels
Resumo:
The immune response to pathogens results in both host resistance and immunopathology. Cytokines and in particular those lymphokines produced by Th1 and Th2 cells play a key role in determining the balance between these two immunologic outcomes. Recent data suggest that interleukin-10, a product of both Th2 cells and macrophages, protects the host against excessive immunopathology. The cytokine environment generated by different pathogens may also influence the course and outcome of infections with unrelated organisms. This relationship may be particularly important in the case of HIV-1 where prior Th1 or Th2 biases established by helminth or intracellular infections may influence either initial viral susceptibility or drive progression to AIDS through immune activation
Resumo:
The nucleus tractus solitarii (NTS) in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II), neuropeptide Y (NPY) and noradrenaline (NA) are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension
Resumo:
Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.
Resumo:
The thymus contains an extensive extracellular matrix. Although thymocytes express integrins capable of binding to matrix molecules, the functional significance of the matrix for T cell development is uncertain. We have shown that the matrix is associated with thymic fibroblasts which are required for the CD44+ CD25+ stage of double negative (CD4-8-) thymocyte development. The survival of cells at this stage is dependent on IL-7 and we propose that the role of fibroblasts is to present, via the matrix, IL-7 to developing T cells.
Resumo:
Mother-pup interaction, as well as other behavioral reactions were studied during the lactation period in 24 litters of Wistar rats and their dams fed either a 16% (control - C; 12 litters) or a 6% (malnourished - M; 12 litters) protein diet. The diets were isocaloric. Throughout lactation there was a 36.4% weight loss of M dams and a 63% body weight deficit in the M pups when compared to control pups. During this period, half of the litters were exposed daily to additional tactile stimulation (CS or MS), while the other half were submitted to normal rearing conditions (CN or MN). The tactile stimulation of pups (handling) consisted of holding the animal in one hand and gently touching the dorsal part of the animal's body with the fingers for 3 min. A special camera and a time-lapse video were used to record litter behavior in their home cages. Starting at 6 p.m. and ending at 6 a.m., on days 3, 6, 12, 15, 18 and 21 of lactation, photos were taken at 4-s intervals. An increase in the frequency (154.88 ± 16.19) and duration (455.86 ± 18.05 min) of suckling was observed throughout the lactation period in all groups compared to birth day (frequency 24.88 ± 2.37 and duration 376.76 ± 21.01 min), but the frequency was higher in the C (84.96 ± 8.52) than in the M group (43.13 ± 4.37); however, the M group (470.2 ± 11.87 min) spent more time suckling as compared with the C group (393.67 ± 13.09 min). The M dams showed a decreased frequency of resting position throughout the lactation period (6.5 ± 2.48) compared to birth day (25.42 ± 7.74). Pups from the C group were more frequently observed separated (73.02 ± 4.38) and interacting (258.99 ± 20.61) more with their mothers than the M pups (separated 66.94 ± 5.5 and interacting 165.72 ± 12.05). Tactile stimulation did not interact with diet condition, showing that the kind of stimulation used in the present study did not lead to recovery from the changes induced by protein malnutrition. The changes in mother-pup interaction produced by protein malnutrition of both may represent retardation in neuromotor development and a higher dependence of the pups on their mothers. These changes may represent an important means of energy saving and heat maintenance in malnourished pups.
Resumo:
Extensive neuronal cell loss is observed in Alzheimer's disease. Laminin immunoreactivity colocalizes with senile plaques, the characteristic extracellular histopathological lesions of Alzheimer brain, which consist of the amyloid ß (Aß) peptide polymerized into amyloid fibrils. These lesions have neurotoxic effects and have been proposed to be a main cause of neurodegeneration. In order to understand the pathological significance of the interaction between laminin and amyloid, we investigated the effect of laminin on amyloid structure and toxicity. We found that laminin interacts with the Aß1-40 peptide, blocking fibril formation and even inducing depolymerization of preformed fibrils. Protofilaments known to be intermediate species of Aß fibril formation were also detected as intermediate species of laminin-induced Aß fibril depolymerization. Moreover, laminin-amyloid interactions inhibited the toxic effects on rat primary hippocampal neurons. As a whole, our results indicate a putative anti-amyloidogenic role of laminin which may be of biological and therapeutic interest for controlling amyloidosis, such as those observed in cerebral angiopathy and Alzheimer's disease.
Resumo:
Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated Ca2+ stores, is explored. The data indicate that the NAADP Ca2+ pool could be used to sensitize the cADPR system. In contrast, the IP3 pool was not affected by the Ca2+ released by NAADP. The mechanism of potentiation of the cADPR-induced Ca2+ release, promoted by Ca2+ released from the NAADP pool, is mediated by the mechanism of Ca2+-induced Ca2+ release. These data raise the possibility that the NAADP Ca2+ store may have a role as a regulator of the cellular sensitivity to cADPR.
Resumo:
Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.
Resumo:
Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.