192 resultados para crop loss
Resumo:
A study was conducted in the subtropical area of Southern Brazil to determine the survival of pathogens in soybean residues under conventional and no-tillage cultivation systems from March to September of 1998 and 1999. The pathogens most frequently isolated were Colletotrichum truncatum, Phomopsis spp., Cercospora kikuchii, Fusarium spp., Macrophomina phaseolina, and Rhizoctonia solani. Other fungi isolated were Myrothecium roridum, Penicillium sp., Chaetomium sp., Epicoccum sp., Corynespora cassiicola and Trichoderma sp. The percent of survival of each pathogen varied according to the month and the year. Survival of C. truncatum, Phomopsis spp. and C. kikuchii were significantly reduced (p<0.05) from the first to the last evaluation either on buried debris or maintained on the soil surface. On the other hand, M. phaseolina and Fusarium spp. were either not affected or favored by burying the debris. The frequency of recovery of Fusarium spp. increased specially in debris kept under the soil. The loss of biomass, measured by debris weight along the period of this study, showed a reduction of 44.4% in the conventional system and 34.9% in the no-tillage system in 1998, when rain was better distributed. In 1999, the reduction was 48.2% and 39.0% for the conventional and no-tillage system, respectively.
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
The objectives of this study were to evaluate the relationship between the diagnosis and recommendation integrated system (DRIS) indices and foliar nutrient concentrations, to establish optimum foliar nutrient concentrations with DRIS and to validate the DRIS norms for sugarcane crop. Foliar nutrient concentrations from 126 sugarcane commercial fields were analyzed during the 1996/97 season, to calculate DRIS indices. Regression analysis was used to fit a model relating DRIS indices to nutrient concentrations. Experiments were carried out during the 1997/98 season, whose treatments consisted of the addition of the most limiting nutrients according to DRIS. A new diagnosis was performed. At the end of 1997/98 season, the yields of each plot were collected. Analysis of variance and Duncan test (5%) were used for the evaluation of the collected data. There was a positive and significant relationship between sugarcane foliar nutrient concentrations and DRIS indices. The optimum foliar nutrient concentrations for sugarcane are: 13.4 g ha-1 for N, 1.91 g ha-1 for P, 12.2 g ha-1 for K, 2.99 g ha-1 for Ca, 2.15 g ha-1 for Mg, 1.61 g ha-1 for S, 4.48 mg ha-1 for Cu, 67.8 mg ha-1 for Mnand 11.7 mg ha-1 for Zn. DRIS norms evaluated are useful to correct nutritional imbalances and to increase sugarcane yield.
Resumo:
Chemical fertilisers are rarely avaiable to poor farmers, for whom the nitrogen (N) is often the most limiting element for cereal grain production. The objective of this study was to quantify the contribution of biological nitrogen fixation (BNF) to groundnut (Arachis hypogaea) and velvet bean (Mucuna pruriens) crops using the 15N natural abundance (delta15N) technique and to determine their residual effect and that of a natural fallow, on growth and N accumulation by two rustic maize varieties. The contribution of BNF calculated from delta15N data was 40.9, 59.6 and 30.9 kg ha-1, for groundnut, velvet bean and the natural fallow, respectively. The only legume grain harvested was from the groundnut, which yielded approximately 1.000 kg ha-1. The subsequent maize varieties ("Sol de Manhã" and "Caiana Sobralha") yielded between 1.958 and 2.971 kg ha-1, and were higher after velvet bean for both maize varieties and "Sol da Manhã" groundnut, followed by "Caiana" after groundnut and, finally, the natural fallow. For a small-holder producer the most attractive system is the groundnut followed by maize, as, in this treatment, both groundnut and maize grain harvest are possible. However, a simple N balance calculation indicated that the groundnut-maize sequence would, in the long term, deplete soil N reserves, while the velvet bean-maize sequence would lead to a build up of soil nitrogen.
Resumo:
The objectives of this study were to evaluate nitrogen utilization by sugarcane ratoon from two sources, applied urea and sugarcane straw covering soil surface (trash blanket), besides the recovery of N from both sources in the soil-plant system. The following treatments were established in a randomized block design with four replicates: T1, vinasse-urea (100 kg ha-1 of urea-N) mixture applied on the total area of the soil covered with cane trash labeled with 15N; T2, vinasse-urea mixture (urea labeled with 15N; 100 kg ha-1 of urea-N) applied on the total area of the soil covered with non-labeled sugarcane trash; and T3, urea-15N (100 kg ha-1 of urea-N) applied in furrows at both sides of cane rows, with previous surface application of vinasse, onto soil without trash covering. The vinasse was applied at a rate of 100 m³ ha-1 in all treatments. The experiment was carried out on a Yellow Red Podzolic soil (Paleudalf), from October 1997 to August 1998, in Piracicaba, SP, Brazil. The nitrogen use efficiency of urea by the sugarcane ratoon was 21%, while that of the sugarcane straw was 9%. The main contributions of N from sugarcane trash, during one cycle, are the preservation and increase of the organic N in soil. The tendency for a lower accumulation of urea-N in the sugarcane plant, in the soil surface covered with sugarcane residue, was compensated by the assimilation of N from trash mineralization. Nitrogen derived from cane trash was more available to plants in the second half of the ratoon cycle
Resumo:
The objective of this work was to determine the effect of incorporation timing of the velvet bean (Stizolobium cinereum) (GM) on both organic broccoli yield and N status. Mineral N content in the soil, biologically fixed N recovery by broccoli, GM biomass decomposition and N release kinetics were also determined. Plots were fertilized with 12 Mg ha-1 of organic compost and received GM either at 0, 15, 30 or 45 days after transplant. Other treatments were compost (12 or 25 Mg ha-1), GM, mineral fertilizers and control (no fertilizer). The data were collected in four completely randomized blocks. GM decomposition increased mineral N content in soil as rapidly as mineral fertilizer or the supply of 25 Mg ha-1 of compost. The N half-life in GM (24 days) is smaller than the mass half-life (35 days) and the biological fixation contributed with 23.6% of N present in the aboveground biomass of broccoli. The result suggests a higher synchrony between the crop relative growth rate and N release from the GM when incorporated at crop early growth stage. The incorporation of GM until 15 days after transplanting replaces 50% of the highest compost dose, without yield loss.
Resumo:
A conceptual framework for crop production efficiency was derived using thermodynamic efficiency concept, in order to generate a tool for performance evaluation of agricultural systems and to quantify the interference of determining factors on this performance. In Thermodynamics, efficiency is the ratio between the output and input of energy. To establish this relationship in agricultural systems, it was assumed that the input energy is represented by the attainable crop yield, as predicted through simulation models based on environmental variables. The method of FAO's agroecological zones was applied to the assessment of the attainable sugarcane yield, while Instituto Brasileiro de Geografia e Estatística (IBGE) data were used as observed yield. Sugarcane efficiency production in São Paulo state was evaluated in two growing seasons, and its correlation with some physical factors that regulate production was calculated. A strong relationship was identified between crop production efficiency and soil aptitude. This allowed inferring the effect of agribusiness factors on crop production efficiency. The relationships between production efficiency and climatic variables were also quantified and indicated that solar radiation, annual rainfall, water deficiency, and maximum air temperature are the main factors affecting the sugarcane production efficiency.
Resumo:
The objective of this work was to determine the sensitivity of maize (Zea mays) genotypes to water deficit, using a simple agrometeorological crop yield model. Crop actual yield and agronomic data of 26 genotypes were obtained from the Maize National Assays carried out in ten locations, in four Brazilian states, from 1998 to 2006. Weather information for each experimental location and period were obtained from the closest weather station. Water deficit sensitivity index (Ky) was determined using the crop yield depletion model. Genotypes can be divided into two groups according to their resistance to water deficit. Normal resistance genotypes had Ky ranging from 0.4 to 0.5 in vegetative period, 1.4 to 1.5 in flowering, 0.3 to 0.6 in fruiting, and 0.1 to 0.3 in maturing period, whereas the higher resistance genotypes had lower values, respectively 0.2-0.4, 0.7-1.2, 0.2-0.4, and 0.1-0.2. The general Ky for the total growing season was 2.15 for sensitive genotypes and 1.56 for the resistant ones. Model performance was acceptable to evaluate crop actual yield, whose average errors estimated for each genotype ranged from -5.7% to +5.8%, and whose general mean absolute error was 960 kg ha-1 (10%).
Resumo:
The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.
Resumo:
The objective of this work was to evaluate the application of the spectral-temporal response surface (STRS) classification method on Moderate Resolution Imaging Spectroradiometer (MODIS, 250 m) sensor images in order to estimate soybean areas in Mato Grosso state, Brazil. The classification was carried out using the maximum likelihood algorithm (MLA) adapted to the STRS method. Thirty segments of 30x30 km were chosen along the main agricultural regions of Mato Grosso state, using data from the summer season of 2005/2006 (from October to March), and were mapped based on fieldwork data, TM/Landsat-5 and CCD/CBERS-2 images. Five thematic classes were considered: Soybean, Forest, Cerrado, Pasture and Bare Soil. The classification by the STRS method was done over an area intersected with a subset of 30x30-km segments. In regions with soybean predominance, STRS classification overestimated in 21.31% of the reference values. In regions where soybean fields were less prevalent, the classifier overestimated 132.37% in the acreage of the reference. The overall classification accuracy was 80%. MODIS sensor images and the STRS algorithm showed to be promising for the classification of soybean areas in regions with the predominance of large farms. However, the results for fragmented areas and smaller farms were less efficient, overestimating soybean areas.
Resumo:
The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
The objective of this work was to develop a procedure to estimate soybean crop areas in Rio Grande do Sul state, Brazil. Estimations were made based on the temporal profiles of the enhanced vegetation index (Evi) calculated from moderate resolution imaging spectroradiometer (Modis) images. The methodology developed for soybean classification was named Modis crop detection algorithm (MCDA). The MCDA provides soybean area estimates in December (first forecast), using images from the sowing period, and March (second forecast), using images from the sowing and maximum crop development periods. The results obtained by the MCDA were compared with the official estimates on soybean area of the Instituto Brasileiro de Geografia e Estatística. The coefficients of determination ranged from 0.91 to 0.95, indicating good agreement between the estimates. For the 2000/2001 crop year, the MCDA soybean crop map was evaluated using a soybean crop map derived from Landsat images, and the overall map accuracy was approximately 82%, with similar commission and omission errors. The MCDA was able to estimate soybean crop areas in Rio Grande do Sul State and to generate an annual thematic map with the geographic position of the soybean fields. The soybean crop area estimates by the MCDA are in good agreement with the official agricultural statistics.
Resumo:
The objective of this work was to evaluate the effects of preceding crops and tillage systems on the incidence of Fusarium wilt (Fusarium oxysporum f. sp. phaseoli) and common bean (Phaseolus vulgaris) yield. The cultivar BRS Valente was cultivated under center‑pivot irrigation in the winter seasons of 2003, 2004 and 2005, after several preceding crops established in the summer seasons. Preceding crops included the legumes Cajanus cajan (pigeon pea), Stylosanthes guianensis, and Crotalaria spectabilis; the grasses Pennisetum glaucum (millet), Sorghum bicolor (forage sorghum), Panicum maximum, and Urochloa brizantha; and a consortium of maize (Zea mays) and U. brizantha (Santa Fé system). Experiments followed a strip‑plot design, with four replicates. Fusarium wilt incidence was higher in the no‑tillage system. Higher disease incidences corresponded to lower bean yields in 2003 and 2004. Previous summer cropping with U. brizantha, U. brizantha + maize consortium, and millet showed the lowest disease incidence. Therefore, the choice of preceding crops must be taken into account for managing Fusarium wilt on irrigated common bean crops in the Brazilian Cerrado.
Resumo:
The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.