111 resultados para body scheme
Resumo:
Naomi Shinomiya Hell was the first researcher to investigate the physiological adaptations to a meal-feeding scheme (MFS) in Brazil. Over a period of 20 years, from 1979 to 1999, Naomi's group determined the physiological and metabolic adaptations induced by this feeding scheme in rats. The group showed the persistence of such adaptations even when MFS is associated with moderate exercise training and the performance to a session of intense physical effort. The metabolic changes induced by the feeding training were discriminated from those caused by the effective fasting period. Naomi made an important contribution to the understanding of the MFS but a lot still has to be done. One crucial question still remains to be satisfactorily answered: what is the ideal control for the MFS?
Resumo:
Cancer patients present high mobilization of host protein, with a decrease in lean body mass and body fat depletion occurring in parallel to neoplastic growth. Since leucine is one of the principal amino acids used by skeletal muscle for energy, we investigated the changes in body composition of pregnant tumor-bearing rats after a leucine-supplemented diet. Sixty pregnant Wistar rats divided into six groups were fed a normal protein diet (18%, N) or a leucine-supplemented diet (3% L-leucine, L). The pregnant groups were: control (CN), Walker 256 carcinoma-bearing rats (WN), control rats pair-fed with tumor-bearing rats (pfN), leucine-supplemented (CL), leucine-supplemented tumor-bearing (WL), and leucine-supplemented rats pair-fed with tumor-bearing rats (pfL). At the end of pregnancy, all animals were sacrificed and body weight and tumor and fetal weight were determined. The carcasses were then analyzed for water, fat and total, collagen and non-collagen nitrogen content. Carcass weight was reduced in the WN, WL, pfN and pfL groups compared to control. The lean body mass and total carcass nitrogen were reduced in both tumor-bearing groups. Despite tumor growth and a decrease in fetal weight, there was a slight decrease in collagen (7%) and non-collagen nitrogen (8%) in the WL group compared with the WN group which showed a decrease of 8 and 12%, respectively. Although the WL group presented severe tumor growth effects, total carcass nitrogen and non-collagen nitrogen were particularly higher in this leucine-supplemented group compared to the WN group. These data suggest that the leucine-supplemented diet had a beneficial effect, probably attenuating body wasting.
Resumo:
The time course of heart rate and body weight alterations during the natural period of dormancy were determined in active feeding and dormant juvenile specimens of Megalobulimus sanctipauli. In both groups, heart rate markedly decreased during the first 40 days of dormancy, tending to stabilize thereafter. This time period coincided with the decrease in environmental temperature during autumn-winter. At the end of the dormancy period, surviving active feeding and dormant snails showed a significant decrease in heart rate which, however, was significantly greater in the latter group. Total body weight decreased concomitantly with heart rate in dormant snails but remained constant in active feeding snails. Body hydration induced significant increases in weight and heart rate in surviving dormant snails. Feeding following hydration promoted a new significant increase in heart rate but not in weight. These results indicate that the decrease in heart rate observed in juvenile specimens of M. sanctipauli during dormancy may be due to at least three factors: 1) decrease in environmental temperature during autumn-winter, 2) starvation which leads to the depletion of endogenous fuel reserves and to a probable decrease in hemolymph nutrient levels, and 3) dehydration which leads to a probable decrease in hemolymph volume and venous return and/or to an increase in hemolymph osmolarity.
Resumo:
The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (~70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 ± 1.1 vs 13.7 ± 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 ± 0.9 vs 9.7 ± 0.6 ml/100 g in control group, P<0.001) and total water (68.7 ± 3.9 vs 59.0 ± 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 ± 0.2 ml/100 g) than in the control group (3.6 ± 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 ± 0.3 ml/100 g) than in the control group (7.2 ± 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 ± 31 vs 773 ± 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.
Resumo:
Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.
Resumo:
Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization) and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3) or whole pieces (N = 3) of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus) were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long) of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.
Resumo:
Short stature, a marker for undernutrition early in life, has been associated with obesity in Brazilian women, but not in men. We tested the hypothesis that weight gain during the reproductive years could explain this gender difference. A national two-stage household survey of mothers with one or more children under five years of age was conducted in Brazil in 1996. The subjects were women aged 20 to 45 years (N = 2297), with last delivery seven months or more prior to the interview. The regions of the country were divided into rural, North/Northeast (urban underdeveloped) and South/Southeast/Midwest (urban developed). The dependent variables were current body mass index (BMI) measured, BMI prior to childbearing (reported), and BMI change. Socioeconomic variables included mother's years of education and family purchasing power score. A secondary analysis was restricted to primiparous women. The prevalence of current overweight and overweight prior to childbearing (BMI > or = 25 kg/m²) was higher among shorter women (<1.50 m) compared to normal stature women only in the urban developed region (P < 0.05). After adjustment for socioeconomic variables, age, parity, BMI prior to childbearing, and age at first birth, current BMI was 2.39 units higher (P = 0.008) for short stature women living in the urban developed area compared with short stature women living in the urban underdeveloped area. For both multiparous and primiparous women, BMI gain compared to the value prior to childbearing was significantly higher among short stature women living in the urban developed region (P <= 0.04). These results provide clear evidence that short stature was associated with a higher BMI and with an increased risk of weight gain/retention with pregnancy in the developed areas of Brazil, but not in the underdeveloped ones.
Resumo:
Our objective was to compare the use of calories from ethanol by well-nourished and malnourished rats in terms of body weight. Female Wistar rats weighing 170-180 g at the beginning of the study were used. The animals were divided into two groups (N = 12 each): group W received water ad libitum and group E an ethanol solution ad libitum as the only source of liquid throughout the experiment. The concentration of ethanol was increased weekly from 0 to 5, 10, 20 and 40% (v/v). In the well-nourished phase (A), all rats received food ad libitum (AW and AE). Ethanol treatment (AE) was then interrupted and water was offered to both groups. After 2 weeks both AW and AE rats were submitted to food restriction (50% of group AW food consumption), thus initiating the malnutrition phase (M). Liquid was offered as described before to the same W (MW) and E (ME) groups. The weight gain during the 1-week treatment of AE rats was similar to that of AW animals only when AE rats received the 5% (v/v) ethanol solution (9.16 vs 10.47 g). Weight loss was observed after exposure to 10% ethanol (P < 0.05) in spite of maintenance of caloric intake. Malnourished rats presented weight loss, which was attenuated by ethanol intake up to the 20% (v/v) solution and was related to an increased caloric offer. This effect was not observed with the 40% ethanol solution (-9.98 g). These data suggest that calories from ethanol were used to maintain body weight up to the concentration of 10% (v/v) (well-nourished) and 20% (v/v) (malnourished) and that ethanol has a toxic profile which depends on nutritional status.
Resumo:
Cajal bodies (CB) are ubiquitous nuclear structures involved in the biogenesis of small nuclear ribonucleoproteins and show narrow association with the nucleolus. To identify possible relationships between CB and the nucleolus, the localization of coilin, a marker of CB, and of a set of nucleolar proteins was investigated in cultured PtK2 cells undergoing micronucleation. Nocodazol-induced micronucleated cells were examined by double indirect immunofluorescence with antibodies against coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM/Scl, and To/Th. Cells were imaged on a BioRad 1024-UV confocal system attached to a Zeiss Axiovert 100 microscope. Since PtK2 cells possess only one nucleolus organizer region, micronucleated cells presented only one or two micronuclei containing nucleolus. By confocal microscopy we showed that in most micronuclei lacking a typical nucleolus a variable number of round structures were stained by antibodies against fibrillarin, NOR-90/hUBF protein, and coilin. These bodies were regarded as CB-like structures and were not stained by anti-PM/Scl and anti-To/Th antibodies. Anti-RNA polymerase I antibodies also reacted with CB-like structures in some micronuclei lacking nucleolus. The demonstration that a set of proteins involved in RNA/RNP biogenesis, namely coilin, fibrillarin, NOR-90/hUBF, and RNA polymerase I gather in CB-like structures present in nucleoli-devoid micronuclei may contribute to shed some light into the understanding of CB function.
Resumo:
The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.
Resumo:
We investigated the relationship between fetal body weight at term (pregnancy day 21) and the extent of ossification of sternum, metacarpus, metatarsus, phalanges (proximal, medial and distal) of fore- and hindlimbs and cervical and coccygeal vertebrae in Wistar rats. The relationships between fetal body weight and sex, intrauterine position, uterine horn, horn size, and litter size were determined using historical control data (7594 fetuses; 769 litters) of untreated rats. Relationships between body weight and degree of ossification were examined in a subset of 1484 historical control fetuses (154 litters) which were subsequently cleared and stained with alizarin red S. Fetal weight was independent of horn size, uterine horn side (left or right) or intrauterine position. Males were heavier than females and fetal weight decreased with increasing litter size. Evaluation of the skeleton showed that ossification of sternum, metacarpus and metatarsus was extensively complete and independent of fetal weight on pregnancy day 21. In contrast, the extent of ossification of fore- and hindlimb phalanges and of cervical and sacrococcygeal vertebrae was dependent on fetal body weight. The strongest correlation between body weight and degree of ossification was found for hindlimb, medial and proximal phalanges. Our data therefore suggest that, in full-term rat fetuses (day 21), reduced ossification of sternum, metacarpus and metatarsus results from a localized impairment of bone calcification (i.e., a malformation or variation) rather than from general growth retardation and that ossification of hindlimb (medial and proximal) phalanges is a good indicator of treatment-induced fetal growth retardation.
Resumo:
Vitamin D deficiency, observed mainly in the geriatric population, is responsible for loss of bone mass and increased risk of bone fractures. Currently, recommended doses of cholecalciferol are advised, but since there are few studies evaluating the factors that influence the serum levels of 25-hydroxyvitamin D (25(OH)D) following supplementation, we analyzed the relationship between the increase in serum 25(OH)D after supplementation and body fat. We studied a group of 42 homebound elderly subjects over 65 years old (31 women) in order to assess whether there is a need for adjustment of the doses of cholecalciferol administered to this group according to their adipose mass. Baseline measurements of 25(OH)D, intact parathyroid hormone and bone remodeling markers (osteocalcin and carboxy-terminal fraction of type 1 collagen) were performed. Percent body fat was measured by dual-energy X-ray absorptiometry. The patients were divided into three groups according to their percent body fat index and were treated with cholecalciferol, 7,000 IU a week, for 12 weeks. The increases in serum levels of 25(OH)D were similar for all groups, averaging 7.46 ng/mL (P < 0.05). It is noteworthy that this increase only shifted these patients from the insufficiency category to hypovitaminosis. Peak levels of 25(OH)D were attained after only 6 weeks of treatment. This study demonstrated that adipose tissue mass does not influence the elevation of 25(OH)D levels following vitamin D supplementation, suggesting that there is no need to adjust vitamin D dose according to body fat in elderly homebound individuals.
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The association between early life factors and body mass index (BMI) in adulthood has been demonstrated in developed countries. The aim of the present study was to assess the influence of early life factors (birth weight, gestational age, maternal smoking, and social class) on BMI in young adulthood with adjustment for adult socioeconomic position. A cohort study was carried out in 1978/79 with 6827 mother-child pairs from Ribeirão Preto city, located in the most developed economic area of the country. Biological, economic and social variables and newborn anthropometric measurements were obtained shortly after delivery. In 1996, 1189 males from this cohort, 34.3% of the original male population, were submitted to anthropometric measurements and were asked about their current schooling on the occasion of army recruitment. A multiple linear regression model was applied to determine variables associated with BMI. Mean BMI was 22.7 (95%CI = 22.5-23.0). After adjustment, BMI was 1.22 kg/m² higher among infants born with high birth weight (³4000 g), 1.21 kg/m² higher among individuals of low social class at birth and 0.69 kg/m² higher among individuals whose mothers smoked during pregnancy (P < 0.05). The association between social class at birth and BMI remained statistically significant (P < 0.05) even after adjustment for adult schooling. These findings suggest that early life social influences on BMI were more important and were not reversed by late socioeconomic position. Therefore, prevention of overweight and obesity should focus not only on changes in adult life styles but also on factors such as high birth weight.
Resumo:
We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.