201 resultados para atypical rotavirus
Resumo:
Actinobacillosis is a common cause of sporadic infection in cattle. It was mostly characterized as a pyogranulomatous inflammation of the tongue, but also soft tissues as lymph nodes, other digestive tract localization and skin. The aim of this study was to describe an episode of granulomatous dermatitis and lymphadenitis affecting a bull herd in Argentina during 2010. Actinobacillus lignieresii was isolated from samples collected from one of the affected bulls, and characteristic lesions were observed. Lesions other than 'wooden tongue' are usually uncommon; however, actinobacillosis should be included as a differential diagnosis for cutaneous diseases.
Resumo:
Porcine group A rotavirus (PoRVA) is a major cause of neonatal diarrhea in suckling and recently weaned piglets worldwide. The involvement of non-group A rotavirus in cases of neonatal diarrhea in piglets are sporadic. In Brazil there are no reports of the porcine rotavirus group C (PoRVC) as etiologic agent of the diarrhea outbreaks in piglets. The aim of this study was to describe the identification of rotavirus group C in single and in mixed infection with rotavirus groups A and B in three neonatal diarrhea outbreaks in suckling (<21-day-old) piglets, with 70% to 80% and 20% to 25% of morbidity and lethality rates, respectively, in three pig herds located in the state of Santa Catarina, Brazil. The diagnosis of PoRV in the diarrheic fecal samples was performed using polyacrylamide gel electrophoresis (PAGE) to identify the presence of porcine rotavirus groups A, B (PoRVB), and C, and by RT-PCR (PoRVA and PoRVC) and semi-nested (SN)-PCR (PoRVB) to partially amplify the VP4 (VP8*)-VP7, NSP2, and VP6 genes of PoRVA, PoRVB, and PoRVC, respectively. One RT-PCR (PoRVA and PoRVC) and SN-PCR (PoRVB) product of each group of rotavirus of each diarrhea outbreak was submitted to nucleotide (nt) sequence analysis. Based on the PAGE technique, 4 (25%) and 1 (6.25%) of the 16 diarrheic fecal samples evaluated in the first outbreak presented PoRVA and PoRVC electropherotype, respectively, and 11 (68.75%) were negative. In the second outbreak, 3 (42.85%) of the 7 fecal samples evaluated presented PoRVA electropherotype, and in 3 (42.85%) and in 1 (14.3%) fecal samples were detected inconclusive and negative results, respectively. Three (30%) of the 10 fecal samples of the third outbreak presented PoRVC electropherotype; 5 (50%) and 2 (20%) samples showed negative and inconclusive results, respectively. Based on the RT-PCR and SN-PCR assays in the first neonatal diarrhea outbreak, PoRVC was detected in 13 (81.2%) of the 16 diarrheic fecal samples evaluated. PoRVC single infection was identified in 4 (25%) of these samples and mixed infections with PoRVA and PoRVB in 9 (56.2%) fecal samples. All of the seven diarrheic fecal samples evaluated from the second neonatal diarrhea outbreak were positive for PoRVC, whereas its mixed infection with other PoRV groups was detected in 4 (57.2%) samples. In the third outbreak, PoRVC in single infection was detected in all of the 10 diarrheic fecal samples analyzed. In the nt sequence analysis, the PoRVA strains of the first and second outbreaks demonstrated higher nt identity with G4P[6] and G9P[23] genotypes, respectively. The PoRVB strains (first and second outbreaks) and the PoRVC strains (first, second, and third outbreaks) showed higher nt identity and clustered in the phylogenetic tree with PoRVB and PoRVC strains that belong to the N4 and I1 genotypes, respectively. This is the first description in Brazil of the involvement of PoRVC in the etiology of diarrhea outbreaks in suckling piglets. The results of this study demonstrated that PoRVC, in both single and mixed infections, is an important enteropathogen involved in neonatal diarrhea outbreaks in piglets and that the use of more sensitive diagnostic techniques allows the identification of mixed infections involving two or even three groups of PoRV, which may be more common than previously reported.
Resumo:
The episodes of diarrhea caused by neonatal bovine rotavirus group A (BoRVA) constitute one of the major health problems in the calf rearing worldwide. The main G (VP7) and P (VP4) genotypes of BoRVA strains involved in the etiology of diarrhea in calves are G6P[1], G10P[11], G6P[5], and G8P[1]. However, less frequently, other G and P genotypes have been described in BoRVA strains identified in diarrheic fecal samples of calves. This study describes the identification and molecular characterization of an emerging genotype (G6P[11]) in BoRVA strains involved in the etiology of a diarrhea outbreak in beef calves in a cattle herd of high production in extensive management system. The diarrhea outbreak, which showed high morbidity (60%) and lethality (7%) rates, occurred in calves (n= 384) Nelore (Bos indicus) up to 30-day-old from the State of Mato Grosso do Sul, Brazil. BoRVA was identified in 80% (16/20) of the fecal samples analyzed by polyacrylamide gel electrophoresis (PAGE) technique. In all PAGE-positive fecal samples were amplified products with 1,062-bp and 876-bp in the RT-PCR assays for VP7 (G type) and VP4 (VP8*) (P type) of BoRVA, respectively. The nucleotide sequence analysis of VP7 and VP4 genes of four wild-type BoRVA strains showed G6-III P[11]-III genotype/lineage. The G6P[11] genotype has been described in RVA strains of human and animal hosts, however, in calves this genotype was only identified in some cross-sectional studies and not as a single cause of diarrhea outbreaks in calves with high morbidity and lethality rates as described in this study. The monitoring of the G and P genotypes of BoRVA strains involved in diarrhea outbreaks in calves is important for both animal and public health by allowing the identification of the most frequent genotypes, the characterization of novel genotypes and to identify reassortments with genotypes described in animal and human hosts. The results of this study show the importance of the monitoring of the genotypes of BoRVA strains involved in episodes of bovine neonatal diarrhea as for characterization of frequency of occurrence and pathogenic potential of uncommon genotypes as for monitoring of the emergency of different BoRVA genotypes not included in commercial vaccines.
Resumo:
Group A Rotavirus (RVA) is one of the most common causes of diarrhea in humans and several animal species. A SYBR-Green Real-Time polymerase chain reaction (PCR) was developed to diagnose RVA from porcine fecal samples, targeting amplification of a 137-bp fragment of nonstructural protein 5 (NSP5) gene using mRNA of bovine NADH-desidrogenase-5 as exogenous internal control. Sixty-five samples were tested (25 tested positive for conventional PCR and genetic sequencing). The overall agreement (kappa) was 0.843, indicating 'very good' concordance between tests, presenting 100% of relative sensitivity (25+ Real Time PCR/25+ Conventional PCR) and 87.5% of relative sensitivity (35- Real Time PCR/40- Conventional PCR). The results also demonstrated high intra- and inter-assay reproducibility (coefficient of variation ≤1.42%); thus, this method proved to be a fast and sensitive approach for the diagnosis of RVA in pigs.
Resumo:
Rotaviruses and reoviruses are involved in human and animal diseases. It is known that both viruses penetrate the gastrointestinal tract but their interaction with phagocytic cells is unknown. To study this interaction, peritoneal resident phagocytic cells were used and rotavirus and reovirus replication in peritoneal phagocytic cells was observed. However, rotavirus replication in these cells led to the production of defective particles since MA-104 cells inoculated with rotavirus phagocytic cell lysate did not show any evidence of virus replication. On the basis of these results, we suggest that, although reovirus dissemination may be helped by these phagocytic cells, these cells may control rotavirus infection and probably contribute to the prevention of its dissemination.
Resumo:
Group C rotaviruses are fastidious in their in vitro cell culture requirements. Recent serosurveys indicate that antibody to group C rotavirus is present in 3-45% of the human population in certain geographic locations, suggesting that rotavirus group C infection is more prevalent than previously believed and that the low rate of detection of these agents is probably due to the lack of sensitive diagnostic assays. From March to December 1994, 406 fecal specimens were collected from children under five years of age who were outpatients at the emergency services of nine public hospitals in Brasília, Federal District, Brazil. In addition to the samples from children, one public outpatient unit requested virological investigation of a stool sample from an HIV-seropositive adult male with diarrhea of sudden onset. All samples were analyzed by enzyme immunoassay for group A rotavirus and adenovirus (EIARA) and by polyacrylamide gel electrophoresis (PAGE). One hundred and seven (26%) were positive for group A rotavirus. Four samples from children and the sample from the HIV-seropositive patient, although negative by EIARA, showed a group C rotavirus profile by PAGE and were positive for rotavirus by electron microscopy. Using specific VP6 and VP7 primers for group C rotavirus, a reverse transcriptase-polymerase chain reaction (RT-PCR) was performed and products were detected by agarose gel electrophoresis and ethidium bromide staining. These products were confirmed to be specific for group C rotavirus by using digoxigenin-oligonucleotide probes, Southern hybridization and chemiluminescent detection. The five positive group C rotavirus samples were detected in August (3 samples) and September (2 samples). To the best of our knowledge, this is the first report of group C rotavirus detected in the Federal District, Brazil and in an HIV-seropositive patient with acute gastroenteritis.
Resumo:
The G genotyping of 74 group A rotavirus samples was done by RNA-DNA hybridization (dot-blot) using oligonucleotide probes for the VP7 gene region of the human rotavirus serotypes/genotypes 1, 2, 3 and 4. Thirty-one samples could be genotyped by dot-blot showing the following results: G1 = 16, G4 = 6, G3 = 5, and G2 = 4. The data show circulation of genotypes G1-G4 and the predominance of G1. The knowledge of genotypes provides important information concerning rotavirus circulation in Central Brazil.
Resumo:
Rotaviruses are the major cause of viral diarrhea in humans and animals. Actinomycin D (Act D) is an antibiotic that intercalates DNA and therefore inhibits DNA-dependent transcription. The current study was carried out to assess the influence of Act D on the replication of simian rotavirus (SA11) in cell culture. Virus-infected MA-104 cell cultures were studied in the presence of Act D at concentrations of 1.25 and 2.5 µg/ml. Treatment of rotavirus-infected cells with 2.5 µg/ml Act D 48 h post-infection reduced the cytoplasmic metachromasia after staining with acridine orange by 25%. Viral RNA labeled with ³H-uridine in the presence of the drug was separated by polyacrylamide gel electrophoresis. Viral RNA replication was not affected by Act D, but increased ³H-uridine uptake was demonstrable by infected cells in the presence of the drug. This possibly was due to the inhibition of cellular RNA synthesis by Act D, which thus enhances incorporation of the radionuclide into the viral RNA. Act D reduced the number of infected cells presenting virus-specific fluorescence 48 h post-infection by more than 50%. These data suggest that Act D may have complexed with viral RNA and prevented newly synthesized mRNA from being translated, but may not have prevented early replication.
Resumo:
In a one-year prospective study carried out to define the role of rotavirus and Escherichia coli in local childhood diarrhea, we determined the prevalence of both agents in 54 diarrheic children attending a health center in Botucatu. Diarrheogenic E. coli (DEC) strains were characterized by O:H serotyping, a search for virulence genetic markers, and assays of adherence to HEp-2 cells. Except for enteroaggregative E. coli (EAEC), no other DEC category was detected in the children's stools. Both EAEC and rotavirus were isolated from 22 of the 54 (41.0%) diarrheic children as single agents or in combination with other enteropathogens. However, when considering the presence of a single agent, EAEC was dominant and isolated from 20.4% of the patients, whereas rotavirus was detected in 14.8%. These results indicate that rotavirus and EAEC play a significant role as agents of childhood diarrhea in the local population.
Resumo:
The International Classification of Diseases, 10th edition (ICD-10) defines atypical bulimia nervosa (ABN) as an eating disorder that encompasses several different syndromes, including the DSM-IV binge eating disorder (BED). We investigated whether patients with BED can be differentiated clinically from patients with ABN who do not meet criteria for BED. Fifty-three obese patients were examined using the Structured Clinical Interview for DSM-IV and the ICD-10 criteria for eating disorders. All volunteers completed the Binge Eating Scale (BES), the Beck Depression Inventory, and the Symptom Checklist-90 (SCL-90). Individuals fulfilling criteria for both ABN and BED (N = 18), ABN without BED (N = 16), and obese controls (N = 19) were compared and contrasted. Patients with ABN and BED and patients with ABN without BED displayed similar levels of binge eating severity according to the BES (31.05 ± 7.7 and 30.05 ± 5.5, respectively), which were significantly higher than those found in the obese controls (18.32 ± 8.7; P < 0.001 and P < 0.001, respectively). When compared to patients with ABN and BED, patients with ABN without BED showed increased lifetime rates of agoraphobia (P = 0.02) and increased scores in the somatization (1.97 ± 0.85 vs 1.02 ± 0.68; P = 0.001), obsessive-compulsive (2.10 ± 1.03 vs 1.22 ± 0.88; P = 0.01), anxiety (1.70 ± 0.82 vs 1.02 ± 0.72; P = 0.02), anger (1.41 ± 1.03 vs 0.59 ± 0.54; P = 0.005) and psychoticism (1.49 ± 0.93 vs 0.75 ± 0.55; P = 0.01) dimensions of the SCL-90. The BED construct may represent a subgroup of ABN with less comorbities and associated symptoms.
Resumo:
In the present study, 470 children less than 72 months of age and presenting acute diarrhea were examined to identify associated enteropathogenic agents. Viruses were the pathogens most frequently found in stools of infants with diarrhea, including 111 cases of rotavirus (23.6% of the total diarrhea cases) and 30 cases of adenovirus (6.3%). The second group was diarrheogenic Escherichia coli (86 cases, 18.2%), followed by Salmonella sp (44 cases, 9.3%) and Shigella sp (24 cases, 5.1%). Using the PCR technique to differentiate the pathogenic categories of E. coli, it was possible to identify 29 cases (6.1%) of enteropathogenic E. coli (EPEC). Of these, 10 (2.1%) were typical EPEC and 19 (4.0%) atypical EPEC. In addition, there were 26 cases (5.5%) of enteroaggregative E. coli, 21 cases (4.4%) of enterotoxigenic E. coli, 7 cases (1.4%) of enteroinvasive E. coli (EIEC), and 3 cases (0.6%) of enterohemorrhagic E. coli. When comparing the frequencies of diarrheogenic E. coli, EPEC was the only category for which significant differences were found between diarrhea and control groups. A low frequency of EIEC was found, thus EIEC cannot be considered to be a potential etiology agent of diarrhea. Simultaneous infections with two pathogens were found in 39 diarrhea cases but not in controls, suggesting associations among potential enteropathogens in the etiology of diarrhea. The frequent association of diarrheogenic E. coli strains was significantly higher than the probability of their random association, suggesting the presence of facilitating factor(s).
Resumo:
Group B rotaviruses (RV-B) were first identified in piglet feces, being later associated with diarrhea in humans, cattle, lambs, and rats. In human beings, the virus was only described in China, India, and Bangladesh, especially infecting adults. Only a few studies concerning molecular analysis of the RV-B NSP2 gene have been conducted, and porcine RV-B has not been characterized. In the present study, three porcine wild-type RV-B strains from piglet stool samples collected from Brazilian pig herds were used for analysis. PAGE results were inconclusive for those samples, but specific amplicons of the RV-B NSP2 gene (segment 8) were obtained in a semi-nested PCR assay. The three porcine RV-B strains showed the highest nucleotide identity with the human WH1 strain and the alignments with other published sequences resulted in three groups of strains divided according to host species. The group of human strains showed 92.4 to 99.7% nucleotide identity while the porcine strains of the Brazilian RV-B group showed 90.4 to 91.8% identity to each other. The identity of the Brazilian porcine RV-B strains with outer sequences consisting of group A and C rotaviruses was only 35.3 to 38.8%. A dendrogram was also constructed to group the strains into clusters according to host species: human, rat, and a distinct third cluster consisting exclusively of the Brazilian porcine RV-B strains. This is the first study of the porcine RV-B NSP2 gene that contributes to the partial characterization of this virus and demonstrates the relationship among RV-B strains from different host species.
Resumo:
Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury under conditions of intestinal bacterial overgrowth. Bacterial translocation (BT) was induced in female Wistar-EPM rats (200-250 g) by oroduodenal catheterization and inoculation of 10 mL 10(10) colony forming unit (CFU)/mL, with the bacteria being confined between the duodenum and ileum with ligatures. After 2 h, mesenteric lymph nodes (MLN), liver and spleen were cultured for translocated bacteria and BT-related microcirculation changes were monitored in mesenteric and abdominal organs by intravital microscopy and laser Doppler flow, respectively. tEPEC (N = 11) and aEPEC (N = 11) were recovered from MLN (100%), spleen (36.4 and 45.5%), and liver (45.5 and 72.7%) of the animals, respectively. Recovery of the positive control E. coli R-6 (N = 6) was 100% for all compartments. Bacteria were not recovered from extraintestinal sites of controls inoculated with non-pathogenic E. coli strains HB101 (N = 6) and HS (N = 10), or saline. Mesenteric microcirculation injuries were detected with both EPEC strains, but only aEPEC was similar to E. coli R-6 with regard to systemic tissue hypoperfusion. In conclusion, overgrowth of certain aEPEC strains may lead to BT and impairment of the microcirculation in systemic organs.
Resumo:
This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.
Resumo:
We assessed the efficacy and tolerability of the augmentation of antidepressants (ATDs) with atypical antipsychotics (AAPs) to treat patients with major depressive disorder. A retrograde study to identify relevant patient data included databases of PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Database of Abstracts of Reviews of Effects. Data from 17 trials, involving 3807 participants, were identified. The remission rate (RR) and overall response rate (ORR) of adjunctive treatment with AAPs were significantly higher than placebo treatment: RR=1.90 (95%CI=1.61-2.23, z=7.74, P<0.00001) and ORR=1.68 (95%CI=1.45-1.94, z=7.07, P<0.00001). We found that the short-term (4 weeks) treatment [ORR=1.70 (95%CI=0.98-2.95, Z=1.89, P=0.06)] was significantly different from the long-term (6-12 weeks) treatment [ORR=1.68 (95%CI=1.45-1.94, z=7.07, P<0.00001)]. No significant difference in ORR was observed between groups with or without sedative drugs. The discontinuation rate due to adverse effects was higher for adjunctive treatment with AAPs: ORR=3.32 (95%CI=2.35-4.70, z=6.78, P<0.00001). These results demonstrate that the augmentation of ATDs with AAPs (olanzapine, quetiapine, aripiprazole, and risperidone) was more effective than a placebo in improving response and remission rates, although associated with a higher discontinuation rate due to adverse effects.