153 resultados para Vector-Bourne Disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovered in 1909, Chagas disease was progressively shown to be widespread throughout Latin America, affecting millions of rural people with a high impact on morbidity and mortality. With no vaccine or specific treatment available for large-scale public health interventions, the main control strategy relies on prevention of transmission, principally by eliminating the domestic insect vectors and control of transmission by blood transfusion. Vector control activities began in the 1940s, initially by means of housing improvement and then through insecticide spraying following successful field trials in Brazil (Bambui Research Centre), with similar results soon reproduced in São Paulo, Argentina, Venezuela and Chile. But national control programmes only began to be implemented after the 1970s, when technical questions were overcome and the scientific demonstration of the high social impact of Chagas disease was used to encourage political determination in favour of national campaigns (mainly in Brazil). Similarly, large-scale screening of infected blood donors in Latin America only began in the 1980s following the emergence of AIDS. By the end of the last century it became clear that continuous control in contiguous endemic areas could lead to the elimination of the most highly domestic vector populations - especially Triatoma infestans and Rhodnius prolixus - as well as substantial reductions of other widespread species such as T. brasiliensis, T. sordida, and T. dimidiata, leading in turn to interruption of disease transmission to rural people. The social impact of Chagas disease control can now be readily demonstrated by the disappearance of acute cases and of new infections in younger age groups, as well as progressive reductions of mortality and morbidity rates in controlled areas. In economic terms, the cost-benefit relationship between intervention (insecticide spraying, serology in blood banks) and the reduction of Chagas disease (in terms of medical and social care and improved productivity) is highly positive. Effective control of Chagas disease is now seen as an attainable goal that depends primarily on maintaining political will, so that the major constraints involve problems associated with the decentralisation of public health services and the progressive political disinterest in Chagas disease. Counterbalancing this are the political and technical cooperation strategies such as the "Southern Cone Initiative" launched in 1991. This international approach, coordinated by PAHO, has been highly successful, already reaching elimination of Chagas disease transmission in Uruguay, Chile, and large parts of Brazil and Argentina. The Southern Cone Initiative also helped to stimulate control campaigns in other countries of the region (Paraguay, Bolivia, Peru) which have also reached tangible regional successes. This model of international activity has been shown to be feasible and effective, with similar initiatives developed since 1997 in the Andean Region and in Central America. At present, Mexico and the Amazon Region remain as the next major challenges. With consolidation of operational programmes in all endemic countries, the future focus will be on epidemiological surveillance and care of those people already infected. In political terms, the control of Chagas disease in Latin America can be considered, so far, as a victory for international scientific cooperation, but will require continuing political commitment for sustained success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A five-year domiciliary collection in the 22 departments of Guatemala showed that out of 4,128 triatomines collected, 1,675 were Triatoma dimidiata (Latreille, 1811), 2,344 were Rhodnius prolixus Stal 1859, and only 109 were T. nitida Usinger 1939. The Chagas disease parasite, Trypanosoma cruzi, was found in all three species. Their natural infection rates were similar in the first two species (20.6%; 19.1%) and slightly lower in T. nitida(13.8%). However there was no significant difference in the infection rates in the three species (p = 0.131). T. dimidiata males have higher infection rates than females (p = 0.030), whereas for R. prolixus there is no difference in infection rates between males and females (p = 0.114). The sex ratios for all three species were significantly skewed. More males than females were found inside houses for T. dimidiata (p < 0.0001) and T. nitida (p = 0.011); a different pattern was seen for R. prolixus (p = 0.037) where more females were found. Sex ratio is proposed as an index to show the mobility of T. dimidiata in different populations. T. dimidiata is widely distributed in the country, and is also the main vector in at least ten departments, but R. prolixus with higher vectorial capacity is an important vector in at least two departments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas disease, named after Carlos Chagas who first described it in 1909, exists only on the American Continent. It is caused by a parasite, Trypanosoma cruzi, transmitted to humans by blood-sucking triatomine bugs and by blood transfusion. Chagas disease has two successive phases, acute and chronic. The acute phase lasts 6 to 8 weeks. After several years of starting the chronic phase, 20% to 35% of the infected individuals, depending on the geographical area will develop irreversible lesions of the autonomous nervous system in the heart, esophagus, colon and the peripheral nervous system. Data on the prevalence and distribution of Chagas disease improved in quality during the 1980's as a result of the demographically representative cross-sectional studies carried out in countries where accurate information was not available. A group of experts met in Brasília in 1979 and devised standard protocols to carry out countrywide prevalence studies on human T. cruzi infection and triatomine house infestation. Thanks to a coordinated multi-country program in the Southern Cone countries the transmission of Chagas disease by vectors and by blood transfusion has been interrupted in Uruguay in1997, in Chile in 1999, and in 8 of the 12 endemic states of Brazil in 2000 and so the incidence of new infections by T. cruzi in the whole continent has decreased by 70%. Similar control multi-country initiatives have been launched in the Andean countries and in Central America and rapid progress has been recorded to ensure the interruption of the transmission of Chagas disease by 2005 as requested by a Resolution of the World Health Assembly approved in 1998. The cost-benefit analysis of the investments of the vector control program in Brazil indicate that there are savings of US$17 in medical care and disabilities for each dollar spent on prevention, showing that the program is a health investment with good return. Since the inception in 1979 of the Steering Committee on Chagas Disease of the Special Program for Research and Training in Tropical Diseases of the World Health Organization (TDR), the objective was set to promote and finance research aimed at the development of new methods and tools to control this disease. The well known research institutions in Latin America were the key elements of a world wide network of laboratories that received - on a competitive basis - financial support for projects in line with the priorities established. It is presented the time line of the different milestones that were answering successively and logically the outstanding scientific questions identified by the Scientific Working Group in 1978 and that influenced the development and industrial production of practical solutions for diagnosis of the infection and disease control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular evidence showed 46.2% of Trypanosoma cruzi infection in Mepraia spinolai insects from North-Central Chile, which is significantly higher than previous reports of up to 26% by microscopic observation. Our results show similar infection levels among nymphal stages, ranging from 38.3 to 54.1%, indicating that younger nymphs could be as important as older ones in parasite transmission. A cautionary note must be stressed to indicate the potential role of M. spinolai in transmitting T. cruzi in country areas due to the high infection level detected by molecular analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Literature from 1928 through 2004 was compiled from different document sources published in Mexico or elsewhere. From these 907 publications, we found 19 different topics of Chagas disease study in Mexico. The publications were arranged by decade and also by state. This information was used to construct maps describing the distribution of Chagas disease according to different criteria: the disease, vectors, reservoirs, and strains. One of the major problems confronting study of this zoonotic disease is the great biodiversity of the vector species; there are 30 different species, with at least 10 playing a major role in human infection. The high variability of climates and biogeographic regions further complicate study and understanding of the dynamics of this disease in each region of the country. We used a desktop Genetic Algorithm for Rule-Set Prediction procedure to provide ecological models of organism niches, offering improved flexibility for choosing predictive environmental and ecological data. This approach may help to identify regions at risk of disease, plan vector-control programs, and explore parasitic reservoir association. With this collected information, we have constructed a data base: CHAGMEX, available online in html format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is a serious tropical disease that affects approximately 500 thousand people worldwide every year. In the Americas, VL is caused by the parasite Leishmania (Leishmania) infantum chagasi mainly transmitted by the bite of the sand fly vector Lutzomyia longipalpis. Despite recent advances in the study of interaction between Leishmania and sand flies, very little is known about sand fly protein expression profiles. Understanding how the expression of proteins may be affected by blood feeding and/or presence of parasite in the vector's midgut might allow us to devise new strategies for controlling the spread of leishmaniasis. In this work, we report the characterization of a vacuolar ATPase subunit C from L. longipalpis by screening of a midgut cDNA library with a 220 bp fragment identified by means of differential display reverse transcriptase-polymerase chain reaction analysis. The expression of the gene varies along insect development and is upregulated in males and bloodfed L. longipalpis, compared to unfed flies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Created in 1991 by the governments of Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay, the Southern Cone Initiative (SCI) has been extremely important for Chagas disease control in this region. Its basic objective was to reach the interruption of this disease, chiefly by means of the elimination of the principal vector Triatoma infestans and by the selection of safe donors in the regional blood banks. After a summarized historic of SCI, the text shows the advance of technical and operative activities, emphasizing some factors for the initiative success, as well as some difficulties and constraints. The future of SCI will depend of the continuity of the actions and of political priority. Scientific community has been highly responsible for this initiative and its maintenance. At the side of this, national and international efforts must be involved and reinforced to assure the accomplishment of the final targets of SCI. Very specially, the Pan American Health Organization has cooperated with the Initiative in all its moments and activities,being the most important catalytic and technical factor for SCI success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Andean Countries' Initiative (ACI) for controlling Chagas disease was officially created in 1997 within the framework of the Hipolito Unanue Agreement (UNANUE) between the Ministries of Health of Colombia, Ecuador, Peru, and Venezuela. Its objective was to interrupt transmission via vector and transfusion in the region, taking into account that there are 12.5 million people at risk in the four Andean countries forming the initiative in the area and around 3 million people are infected by Trypanosoma cruzi. The progress of control activities for the vector species present in the Andean sub-region, for different reasons, has been slow and control interventions have still not been installed in all geographical areas occupied by the target species. This has been partly due to lack of knowledge about these vector populations' biological characteristics, and consequent uncertainty about which are the appropriate control measures and strategies to be implemented in the region. The main vector species present important similarities in Venezuela and Colombia and in Ecuador and Northern Peru and they can be approached in a similar way throughout the whole regions, basing approaches on and adapting them to the current strategies being developed in Venezuela during the 1960s which have been progressively adopted in the Southern Cone and Central-American region. Additional measures are needed for keeping endemic areas free from Rhodnius prolixus silvatic populations, widely spread in the Orinoco region in Colombia and Venezuela. Regarding aetiological treatment, it is worth mentioning that (with the exception of Colombia) none of the other countries forming the ACI have registered medicaments available for treating infected young people. There are no suitable follow-up programmes in the sub-region or for treating cases of congenital Chagas disease. An integral and integrated programme encompassing all the aspects including transmission by transfusion which seems to have achieved extremely encouraging results in all countries, are urgently needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ecological-evolutionary classification of Amazonian triatomines is proposed based on a revision of their main contemporary biogeographical patterns. Truly Amazonian triatomines include the Rhodniini, the Cavernicolini, and perhaps Eratyrus and some Bolboderini. The tribe Rhodniini comprises two major lineages (pictipes and robustus). The former gave rise to trans-Andean (pallescens) and Amazonian (pictipes) species groups, while the latter diversified within Amazonia (robustus group) and radiated to neighbouring ecoregions (Orinoco, Cerrado-Caatinga-Chaco, and Atlantic Forest). Three widely distributed Panstrongylus species probably occupied Amazonia secondarily, while a few Triatoma species include Amazonian populations that occur only in the fringes of the region. T. maculata probably represents a vicariant subset isolated from its parental lineage in the Caatinga-Cerrado system when moist forests closed a dry trans-Amazonian corridor. These diverse Amazonian triatomines display different degrees of synanthropism, defining a behavioural gradient from household invasion by adult triatomines to the stable colonisation of artificial structures. Anthropogenic ecological disturbance (driven by deforestation) is probably crucial in the onset of the process, but the fact that only a small fraction of species effectively colonises artificial environments suggests a role for evolution at the end of the gradient. Domestic infestation foci are restricted to drier subregions within Amazonia; thus, populations adapted to extremely humid rainforest microclimates may have limited chances of successfully colonising the slightly drier artificial microenvironments. These observations suggest several research avenues, from the use of climate data to map risk areas to the assessment of the synanthropic potential of individual vector species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas disease is a major public health problem in Bolivia. In the city of Cochabamba, 58% of the population lives in peripheral urban districts ("popular zones") where the infection prevalence is extremely high. From 1995 to 1999, we studied the demographics of Chagas infections in children from five to 13 years old (n = 2218) from the South zone (SZ) and North zone (NZ) districts, which differ in social, environmental, and agricultural conditions. Information gathered from these districts demonstrates qualitative and quantitative evidence for the active transmission of Trypanosoma cruzi in urban Cochabamba. Seropositivity was high in both zones (25% in SZ and 19% in NZ). We observed a high risk of infection in children from five to nine years old in SZ, but in NZ, a higher risk occurred in children aged 10-13, with odds ratio for infection three times higher in NZ than in SZ. This difference was not due to triatomine density, since more than 1,000 Triatoma infestans were captured in both zones, but was possibly secondary to the vector infection rate (79% in SZ and 37% in NZ). Electrocardiogram abnormalities were found to be prevalent in children and pre-adolescents (SZ = 40%, NZ = 17%), indicating that under continuous exposure to infection and re-infection, a severe form of the disease may develop early in life. This work demonstrates that T. cruzi infection should also be considered an urban health problem and is not restricted to the rural areas and small villages of Bolivia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1979, the first autochthonous case of Chagas disease in the Western Brazilian Amazon was reported and an entomological survey was carried out around it. Specimens of Rhodnius pictipes and Rhodnius robustus were collected in intradomicile and sylvatic ecotopes. Adult bugs were infected with trypanosomatids. Invasion of houses by triatomines was demonstrated and the presence of infected bugs inside dwellings was associated with the possibility of vector-borne Chagas disease. Continuous entomological surveillance employing additional taxonomic tools is needed in the Brazilian Amazon in order to better understand the dynamics of house invasion by sylvatic triatomines and the risk of Trypanosoma cruzi infection transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bihar, India has been in the grip of kala-azar for many years. Its rampant and severe spread has made life miserable in most parts of the state. Such conditions require a comprehensive understanding of this affliction. The numbers coming out of the districts prone to the disease in the north and south Ganges have provided us with several startling revelations, as there are striking uniformities on both sides, including similar vegetation, water storage facilities, house construction and little change in risk factors. The northern areas have been regularly sprayed with DDT since 1977, but eradication of the disease appears to be a distant dream. In 2007 alone, there were as many as 37,738 cases in that region. In contrast, the southern districts of Patna and Nalanda have never had the disease in its epidemic form and endemic disease has been present in only some pockets of the two districts. In those cases, two rounds of spraying with DDT had very positive results, with successful control and no new established foci. In addition, an eleven-year longitudinal study of the man hour density and house index for the vector Phlebotomus argentipes demonstrated that they were quite high in Patna and Nalanda and quite low in north Bihar. Given these facts, an attempt has been made to unravel the role of P. argentipes saliva (salivary gland) in the epidemiology of kala-azar. It was determined that patchy DDT spraying should be avoided for effective control of kala-azar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas disease, named after Carlos Chagas, who first described it in 1909, exists only on the American Continent. It is caused by a parasite, Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine bugs and via blood transfusion. Chagas disease has two successive phases: acute and chronic. The acute phase lasts six-eight weeks. Several years after entering the chronic phase, 20-35% of infected individuals, depending on the geographical area, will develop irreversible lesions of the autonomous nervous system in the heart, oesophagus and colon, and of the peripheral nervous system. Data on the prevalence and distribution of Chagas disease improved in quality during the 1980s as a result of the demographically representative cross-sectional studies in countries where accurate information was not previously available. A group of experts met in Brasilia in 1979 and devised standard protocols to carry out countrywide prevalence studies on human T. cruzi infection and triatomine house infestation. Thanks to a coordinated multi-country programme in the Southern Cone countries, the transmission of Chagas disease by vectors and via blood transfusion was interrupted in Uruguay in 1997, in Chile in 1999 and in Brazil in 2006; thus, the incidence of new infections by T. cruzi across the South American continent has decreased by 70%. Similar multi-country initiatives have been launched in the Andean countries and in Central America and rapid progress has been reported towards the goal of interrupting the transmission of Chagas disease, as requested by a 1998 Resolution of the World Health Assembly. The cost-benefit analysis of investment in the vector control programme in Brazil indicates that there are savings of US$17 in medical care and disabilities for each dollar spent on prevention, showing that the programme is a health investment with very high return. Many well-known research institutions in Latin America were key elements of a worldwide network of laboratories that carried out basic and applied research supporting the planning and evaluation of national Chagas disease control programmes. The present article reviews the current epidemiological trends for Chagas disease in Latin America and the future challenges in terms of epidemiology, surveillance and health policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One hundred years after its discovery by Carlos Chagas, American trypanosomiasis, or Chagas disease, remains an epidemiologic challenge. Neither a vaccine nor an ideal specific treatment is available for most chronic cases. Therefore, the current strategy for countering Chagas disease consists of preventive actions against the vector and transfusion-transmitted disease. Here, the present challenges, including congenital and oral transmission of Trypanosoma cruzi infections, as well as the future potential for Chagas disease elimination are discussed in light of the current epidemiological picture. Finally, a list of challenging open questions is presented about Chagas disease control, patient management, programme planning and priority definitions faced by researchers and politicians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical.