120 resultados para Tree Crown Segmentation
Resumo:
The interception of the rainfall by the forest canopy has great relevance to the nutrient geochemistry cycle in low fertility tropical soils under native or cultivated forests. However, little is known about the modification of the rainfall water quality and hydrological balance after interception by the canopies of eucalyptus under pure and mixed plantations with leguminous species, in Brazil. Samples of rainfall (RF), throughfall (TF) and stemflow (SF) were collected and analyzed in pure plantations of mangium (nitrogen fixing tree -NFT), guachapele (NFT) and eucalyptus (non-nitrogen fixing tree -NNFT) and in a mixed stand of guachapele and eucalyptus in Seropédica, State of Rio de Janeiro, Brazil. Nine stemflow collectors (in selected trees) and nine pluviometers were randomly disposed under each stand and three pluviometers were used to measure the incident rainfall during 5.5 months. Mangium conveyed 33.4% of the total rainfall for its stem. An estimative based on corrections for the average annual precipitation (1213 mm) indicated that the rainfall's contribution to the nutrient input (kg ha-1) was about 8.42; 0.95; 19.04; 6.74; 4.72 and 8.71 kg ha-1 of N-NH4+, P, K+, Ca+2, Mg+2 and Na+, respectively. Throughfall provided the largest contributions compared to the stemflow nutrient input. The largest inputs of N-NH4+ (15.03 kg ha-1) and K+ (179.43 kg ha-1) were observed under the guachapele crown. Large amounts of Na+ denote a high influence of the sea. Mangium was the most adapted species to water competitiveness. Comparatively to pure stand of eucalyptus, the mixed plantation intensifies the N, Ca and Mg leaching by the canopy, while the inputs of K and P were lower under these plantations.
Reproductive ecology of the exotic tree Muntingia calabura L. (Muntingiaceae) in southeastern Brazil
Resumo:
The exotic tree Muntingia calabura L. (Muntingiaceae), a species native to Central America, is used as fish feed and fiber and cellulose production in Brazil. This study was carried out in urban areas and verified the reproductive biology of this plant species. Flower and fruit morphology, compatibility system, reproductive phenology, pollination and frugivore animals, and germination of disseminated seeds were recorded by standard field and laboratory procedures. This tree is self-compatible and autonomously self-pollinated, with its flowers being mainly visited by bees and its fruits consumed by birds and bats. Germination of its dispersed seeds is fast and occurs at a high rate. The results of this work suggest that M. calabura is very adaptable to cultivated areas,thus being an excellent choice for urban reforestation. However, its reproductive characteristics place this plant as an invasive species with significant potential in southeastern Brazil.
Resumo:
Approximately 7.2% of the Atlantic rainforest remains in Brazil, with only 16% of this forest remaining in the State of Rio de Janeiro, all of it distributed in fragments. This forest fragmentation can produce biotic and abiotic differences between edges and the fragment interior. In this study, we compared the structure and richness of tree communities in three habitats - an anthropogenic edge (AE), a natural edge (NE) and the fragment interior (FI) - of a fragment of Atlantic forest in the State of Rio de Janeiro, Brazil (22°50'S and 42°28'W). One thousand and seventy-six trees with a diameter at breast height > 4.8 cm, belonging to 132 morphospecies and 39 families, were sampled in a total study area of 0.75 ha. NE had the greatest basal area and the trees in this habitat had the greatest diameter:height allometric coefficient, whereas AE had a lower richness and greater variation in the height of the first tree branch. Tree density, diameter, height and the proportion of standing dead trees did not differ among the habitats. There was marked heterogeneity among replicates within each habitat. These results indicate that the forest interior and the fragment edges (natural or anthropogenic) do not differ markedly considering the studied parameters. Other factors, such as the age from the edge, type of matrix and proximity of gaps, may play a more important role in plant community structure than the proximity from edges.
Resumo:
The purpose of this study was to examine if germination is a critical phase on Enterolobium glaziovii regeneration. Hence, the germinative response of E. glaziovii seeds was investigated in relation to some of the main environmental factors (temperature, light and water stress) to which its seeds are subjected in the forest, as well as its dormancy and the longevity of its burial seeds. According to our results, its seeds may be regarded as photoblastic neutral. They do not need alternating temperatures to germinate and can germinate under a broad range of water stress. However, only about 10% of E. glaziovii seeds remain viable after one year. In other words, the annual fruiting, instead seed longevity, seems to maintain the long-term seed availability of this species. Consequently, the seed longevity could be a critical phase of E. glaziovii germination.
Resumo:
This work evaluated eight hypsometric models to represent tree height-diameter relationship, using data obtained from the scaling of 118 trees and 25 inventory plots. Residue graphic analysis and percent deviation mean criteria, qui-square test precision, residual standard error between real and estimated heights and the graybill f test were adopted. The identity of the hypsometric models was also verified by applying the F(Ho) test on the plot data grouped to the scaling data. It was concluded that better accuracy can be obtained by using the model prodan, with h and d1,3 data measured in 10 trees by plots grouped into these scaling data measurements of even-aged forest stands.
Resumo:
The objective of this study was to test the hypothesis that the distribution of tree species in a fragment of submontane seasonal semideciduous forest, a buffer zone in the Parque Estadual do Rio Doce, Minas Gerais, is influenced by geomorphological and weather and soil variables, therefore it can represent a source of information for the restoration of degraded areas where environmental conditions are similar to those of the study area. A detailed soil survey was conducted in the area by sampling three soil profiles per slope segment, totaling 12 profiles. To sample the topsoil, four composite samples were collected from the 10-20 cm layers in each topographic range totaling 16 composite samples. In the low ramp and the lower and upper concave slopes, the texture ranged from clay to sandy-clay. The soil and topographic gradient was characterized by changes in the soil physical-chemical properties. The soil in the 10-20 cm sampled layer was sandier, slightly more fertile and less acid in the low ramp than the clayer soil, nutrient-poor and highly acid soil at the top. The soil conditions in the lower and upper slope of the sampled layers, in turn, were intermediate. The P levels were limiting in all soils. The species distribution along the topographic gradient was associated with variations in chemical fertility, acidity and soil texture. The distribution of Pera leandri, Astronium fraxinifolium, Pouteria torta, Machaerium brasiliense and Myrcia rufipes was correlated with high aluminum levels and to low soil fertility and these species may be indicated for restoration of degraded areas on hillsides and hilltops in regions where environmental conditions are similar. The distribution of Pouteria venosa, Apuleia leiocarpa and Acacia polyphylla was correlated with the less acid and more fertile soil in the environment of the low ramps, indicating the potential for the restoration of similar areas.
Resumo:
Bauhinia x blakeana (B. purpurea x B. variegata) is a natural hybrid that has been cultivated in gardens, streets and parks. Due to its sterility, it must be vegetatively propagated. The objective of this work was to evaluate the viability of cuttings and grafting on its propagation. Semi-woody cuttings were collected during four seasons and treated with 0; 1,000; 2,000; and 3,000 mg L-1 of IBA. The experimental design was entirely randomized and the treatments were arranged in a 4x4 factorial scheme (four collecting times x four IBA concentrations) and five replications with 10 cuttings each, per collecting time and per IBA concentration. Characteristics of roots and shoots were evaluated after 90 days. The data means were compared by the Tukey test and submitted to the polynomial regression analysis. For the grafting experiment, B. variegata and B. variegata var. candida plants of six and 12 months were used as rootstocks and the splice graft and T-budding methods were tested. The experimental design was entirely randomized and the treatments were arranged in a 2x2x2 factorial scheme (two rootstock species x two grafting methods x two rootstock ages) and four replications with five plants each, per rootstock species, per grafting method and per rootstock age. Characteristics of shoots were evaluated after 90 days and the data means were compared by the Tukey test. B. x blakeana can be propagated by semi-woody cuttings collected in spring, without IBA application, or in summer, with the application of 3,000 mg L-1 of IBA. The tested grafting methods were not effective.
Resumo:
Little knowledge on initial behavior of native tree species in recovering landscapes in the Amazon is a current concern for expanding reforestation in the region. Thus, the aim of this study was to evaluate the establishment of native tree species that could be used for reforestation in area previously covered by a pasture of brachiaria grass (Brachiaria brizantha) destined for intensive cattle rasing in the State of Rondônia. For this, there were performed previous diagnostic of landscape changes and the election of tree species based on the ecological group information. Some of the critical macronutrients for plant growth were supplied in the holes to alleviate nutrient deficiencies. In addition, growth and survival parameters were taken to evaluate the initial behavior of species. Six native tree species planted with different combinations (10mx10m, 5mx5m and 3mx3m) had survival rate and growth (total height, girth stem and crown projection area) measured in different intervals: 6-month, 12-month and 24-month after planting. All the species presented survival rate over 90% at 24 months and comparable growth indices to other native species under similar situation and in the region. Overall, Schizolobium amazonicum (bandarra), the non-identified legume tree 1 (acácia grande) and Colubrina glandulosa (sóbrasil) averaged over 90% the highest girth stem growth all over the area. S. amazonicum and the non-identified legume tree 1 (acácia grande) presented the best results for height and canopy area growth parameters, respectively. The combination among native tree species from initial successional ecological groups and fertilizer was favorable to promote reforestation in the conditions of the study area in Rondônia.
Resumo:
Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3) were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a) gliricidia (G) and sabiá (S), as a response to planting density; b) G, S, and neem (N) in competition; c) G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1) as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants). E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.
Resumo:
Brazilian pine or araucaria (Araucaria angustifolia) is a coniferous tree with great economic, social and environmental importance in southern Brazil, being exploited for both wood production and for its edible pine nuts. However, no efficient cloning techniques are available and, therefore, the purpose of this study was to evaluate the effectiveness of vegetative rescue methods for cuttings propagation of the species. Shoots/cuttings were generated in two ways: 26 years old trees underwent coppicing and 20 years old trees had the primary branches on the upper third of crown pruned at 2, 20 and 50 cm from the main trunk. Orthotropic shoots were rooted after application of indole-3-butyric acid (IBA) at 0, 2, 4 and 6 g.L-1. Coppicing produced 47 cuttings per plant with 90% orthotropic shoots, while pruning resulted in 182 cuttings per plant with 44% orthotropic shoots. Rooting success indexes were low with no influence of IBA, although they are slightly superior to the ones available in the literature for the species, ranging from 12 to 30% for the coppice shoots and from 0 to 28% for the branches shoots. We conclude that both vegetative rescue techniques are viable and have potentially important applications. Coppicing is recommended for the propagation aiming the production of wood, while shoots derived from the side branches of the crown are more appropriate for seeds orchards formation.
Resumo:
ABSTRACTThe composition and structure of the low-trunk epiphytic herb assembly as well as its vertical distribution were studied. DBH of host tree and bark type influence species richness and abundance in a nonlooded lowland tropical rainforest in Eastern Amazonia (1º57’36"S 51º36’55"W). A total of 37 epiphytic herb species were identified, among which 60% were Araceae. Species richness and abundance of epiphytic herbs showed tendency of positive correlation with host tree size and no relationships with bark type. Low positive correlation may be a by-product of the predominance of trees with smaller diameter in our sample rather than a reflection of neutral relationship. The absence of relationships with bark type may be partially explained by the large number of secondary, generalist, hemi-epiphytes and also may reflect the absence of suitable substrate in trees with smaller diameter.
Resumo:
ABSTRACTFour stands of 28-year-old radiata pine (Pinus radiata D. Don) grown in the eighth region (Biobio) of Chile were sampled to determine the effect of tree spacing on the microfibril angle. The samples were taken at two different stem levels of the tree, 2.5 m and 7.5 m, with increment strip taken in the Nothern direction. The four experimental stands were characterized by the following spacing 2x2, 2x3, 3x4 and 4x4. The microfibril angle was measured by X-ray diffraction with the SilviScan technology at the FP-Innovation-Paprican Division in Vancouver, Canada. The results showed a significant effect of tree spacing on the microfibril angle in both juvenile wood and mature wood as well as at the two stem levels considered. The minimum (9.42º) was reached in 2x2 stand at 7.5 m in mature wood, while maximum microfibril angle (24.54º) was obtained in 2x3 stand at 2.5 m in juvenile wood. Regarding the effect of tree spacing, 4x4 stand had the lowest microfibril angle,except in mature wood at 7.5 m where 4x4 had the highest microfibril angle (11°) of the four stands.
Resumo:
ABSTRACT The objective of this study was to select allometric models to estimate total and pooled aboveground biomass of 4.5-year-old capixingui trees established in an agrisilvicultural system. Aboveground biomass distribution of capixingui was also evaluated. Single- (diameter at breast height [DBH] or crown diameter or stem diameter as the independent variable) and double-entry (DBH or crown diameter or stem diameter and total height as independent variables) models were studied. The estimated total biomass was 17.3 t.ha-1, corresponding to 86.6 kg per tree. All models showed a good fit to the data (R2ad > 0.85) for bole, branches, and total biomass. DBH-based models presented the best residual distribution. Model lnW = b0 + b1* lnDBH can be recommended for aboveground biomass estimation. Lower coefficients were obtained for leaves (R2ad > 82%). Biomass distribution followed the order: bole>branches>leaves. Bole biomass percentage decreased with increasing DBH of the trees, whereas branch biomass increased.
Resumo:
The aim of this study was to evaluate the effect of different microirrigation designs on root system distribution in wet bulb region, orange orchard yield and quality of orange fruits. The experiment was installed as random blocks with five treatments and four replicates in an orchard of 'Pêra' orange trees grafted on 'Cleopatra' mandarin rootstock. The treatments consisted of: one drip line (T1), two drip lines (T2), four drip lines (T3) per planting row, microsprinkler irrigation (T4) and without irrigation (T5). Irrigation treatments favored yield and ºBrix. The treatment with a single drip line (T1) showed the greatest quantity of roots in relation to the treatments T2 and T3.
Resumo:
It was evaluated the effect of irrigation management on the production characteristics of coffee cultivar Acaiá MG-1474, planted in spacing of 3.00 m x 0.60 m, pruned in 2004, and irrigated by drip since the planting, in 1997. The experimental designed used was of randomized blocks with five treatments and four replications. The treatments consisted of irrigation management strategies, applying or not applying controlled moisture deficit in layer of 0 to 0.4m, in dry seasons of the year: A = no irrigation (control), B = irrigation during all year considering the factor of water availability in the soil (f) equal to 0.75, C = irrigation during all year considering f = 0.25, D = irrigation during all year, but in January /February /March /July /October /November /December with f = 0.25 and April /May /June /August /September with f = 0.75, E = irrigation only during April /May /June /August /September with f = 0.25. From July /2005 to June /2007 the applied water depth was defined based on Class A pan evaporation (ECA) and the period from July/2007 to June/2008 based on readings of matric potential of soil obtained from Watermark® sensors. Each plot consisted of three rows with ten plants per row, considering as useful plot five plants of center line. The results indicated that the E irrigation management was the most suitable for technical reasons.