78 resultados para Tiberius, emperor of Rome, B.C. 2 - A.C. 37.
Resumo:
We investigated the effect of the -278A>C polymorphism in the CYP7A1 gene on the response of plasma lipids to a reduced-fat diet for 6 to 8 weeks in a group of 82 dyslipidemic males with a mean age of 46.0 ± 11.7 years. Individuals who presented at least one high alteration in total cholesterol, low-density lipoprotein cholesterol or triglyceride values were considered to be dyslipidemic. Exclusion criteria were secondary dyslipidemia due to diabetes mellitus, renal, liver, or thyroid disease. None of the subjects were using lipid-lowering medication. Baseline and follow-up lipid concentrations were measured. The genotypes were determined by the digestion of PCR products with the BsaI restriction endonuclease. There were statistically significant reductions in plasma total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations after dietary intervention. The minor allele C has a frequency of 43%. Carriers of the C allele had significantly lower triglyceride concentrations (P = 0.02) than AA homozygotes. After adjustment of covariates, subjects with the AC and CC genotypes showed a greater reduction in triglyceride concentrations compared to subjects with the AA genotype. Multiple linear regression analyses showed that the AC and CC CYP7A1 genotypes accounted for 5.2 and 6.2% of triglyceride concentration during follow-up and adjusted percent of change of triglyceride concentration, respectively. The present study provides evidence that -278A>C polymorphism in the CYP7A1 gene can modify triglyceride concentrations in response to a reduced fat diet in a dyslipidemic male population. This gene represents a potential locus for a nutrigenetic directed approach.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.