78 resultados para Technique-cost
Resumo:
Visual implant elastomer (VIE) has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years), the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments.
Resumo:
The objective of this work was to evaluate the use of a low-cost trap to capture Cerambycidae in different seasons in planted forests in Brazil. Thirty polyethylene-terephthalate trap bottles per hectare were used, disposed at every 50 m. The traps were red painted and contained glass flasks with a mixture of ethanol, methanol and benzaldehyde. There were soap and water at the trap bottom. The traps were checked biweekly for beetle presence. Sampling time required one minute per sample, and traps were easy to use. Total sampling cost, including materials and labor, was US$ 13.46 per sample. Six Cerambycidae species were captured along the dry and rainy seasons.
Resumo:
The study assessed growth and physiological parameters of 'Sunrise Golden' and 'Tainung 01' papaya seedlings grown in 280mL plastic tubes and watered using a low-cost automatic irrigation system adjusted to operate at substrate water tension for starting irrigation (STI) of 3.0, 6.0 or 9.0 kPa. The water depths applied by the dripping system and drainage were monitored during germination and seedling growth. Germination, emergence velocity index (EVI), leaf area, plant height, shoot and root dry weight, stomatal conductance, relative water content (RWC) and relative chlorophyll content (RCC) were evaluated. Soil nutrient levels were determined by electrical conductivity (EC). Water use efficiency (WUE) corresponded to the ratio of plant dry mass to depth of water applied. STI settings did not affect papaya germination or EVI. System configuration to 3.0 and 6.0 kPa STI exhibited the highest drainage and lowest EC and RCC, indicating soil nutrient loss and plant nutrient deficiency. Drainage was greater in tubes planted with the 'Tainung 01' variety, which developed smaller root systems and lower stomatal conductance than 'Sunrise Golden' seedlings. The highest values for shoot dry weight and WEU were obtained at 6.0 kPa STI for 'Sunrise Golden' (0.62 g and 0.69 g L-1) and at 9.0 kPa in 'Tainung 01' (0.35 g and 0.82 g L-1). RWC at 9.0 kPa STI was lower than at 3.0 kPa in both varieties. The results indicate that the low-cost technology developed for irrigation automation is promising. Even so, new studies are needed to evaluate low-flow irrigation systems as well as the nutrient and water needs of different papaya varieties.