83 resultados para Teaching and learning of mathematics in the first grades of basic education
Resumo:
Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.
Resumo:
The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.
Resumo:
Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.
Resumo:
Pneumonectomy is associated with high rates of morbimortality, with postpneumonectomy pulmonary edema being one of the leading causes. An intrinsic inflammatory process following the operation has been considered in its physiopathology. The use of corticosteroids is related to prevention of this edema, but no experimental data are available to support this hypothesis. We evaluated the effect of methylprednisolone on the remaining lungs of rats submitted to left pneumonectomy concerning edema and inflammatory markers. Forty male Wistar rats weighing 300 g underwent left pneumonectomy and were randomized to receive corticosteroids or not. Methylprednisolone at a dose of 10 mg/kg was given before the surgery. After recovery, the animals were sacrificed at 48 and 72 h, when the pO2/FiO2 ratio was determined. Right lung perivascular edema was measured by the index between perivascular and vascular area and neutrophil density by manual count. Tissue expression of vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β) were evaluated by immunohistochemistry light microscopy. There was perivascular edema formation after 72 h in both groups (P = 0.0031). No difference was observed between operated animals that received corticosteroids and those that did not concerning the pO2/FiO2 ratio, neutrophil density or TGF-β expression. The tissue expression of VEGF was elevated in the animals that received methylprednisolone both 48 and 72 h after surgery (P = 0.0243). Methylprednisolone was unable to enhance gas exchange and avoid an inflammatory infiltrate and TGF-β expression also showed that the inflammatory process was not correlated with pulmonary edema formation. However, the overexpression of VEGF in this group showed that methylprednisolone is related to this elevation.
Resumo:
Patients undergoing neurosurgery are predisposed to a variety of complications related to mechanical ventilation (MV). There is an increased incidence of extubation failure, pneumonia, and prolonged MV among such patients. The aim of the present study was to assess the influence of extubation failure and prolonged MV on the following variables: postoperative pulmonary complications (PPC), mortality, reoperation, tracheostomy, and duration of postoperative hospitalization following elective intra-cranial surgery. The study involved a prospective observational cohort of 317 patients submitted to elective intracranial surgery for tumors, aneurysms and arteriovenous malformation. Preoperative assessment was performed and patients were followed up for the determination of extubation failure and prolonged MV (>48 h) until discharge from the hospital or death. The occurrence of PPC, incidence of death, the need for reoperation and tracheostomy, and the length of hospitalization were assessed during the postoperative period. Twenty-six patients (8.2%) experienced extubation failure and 30 (9.5%) needed prolonged MV after surgery. Multivariate analysis showed that extubation failure was significant for the occurrence of death (OR = 8.05 [1.88; 34.36]), PPC (OR = 11.18 [2.27; 55.02]) and tracheostomy (OR = 7.8 [1.12; 55.07]). Prolonged MV was significant only for the occurrence of PPC (OR = 4.87 [1.3; 18.18]). Elective intracranial surgery patients who experienced extubation failure or required prolonged MV had a higher incidence of PPC, reoperation and tracheostomy and required a longer period of time in the ICU. Level of consciousness and extubation failure were associated with death and PPC. Patients who required prolonged MV had a higher incidence of extubation failure.
Resumo:
Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H2O2), but not angiotensin II, stimulated MIF expression in HL-1 cells. H2O2-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H2O2-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.
Resumo:
Familial Mediterranean fever (FMF) is a periodic autoinflammatory disease characterized by chronic inflammation. This study investigated the relationship between acute-phase reactants and gene mutations in attack-free periods of childhood FMF. Patients diagnosed with FMF were divided into four groups based on genetic features: no mutation, homozygous, heterozygous, and compound heterozygous. These groups were monitored for 2 years, and blood samples were collected every 6 months during attack-free periods. Erythrocyte sedimentation rate, C-reactive protein, fibrinogen, and white blood cell count were measured. A disease severity score was determined for each patient. Mean values for erythrocyte sedimentation rate and fibrinogen were significantly different in the homozygous group. White blood cell count and C-reactive protein were similar between the groups. Disease severity score was higher in patients with the M694V mutation than in individuals without the mutation, as well as in those with other mutation groups. Periodic follow-up of patients with FMF MEFV mutations in subjects with acute-phase reactants may be useful in the prevention of morbidity.
Resumo:
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.