236 resultados para Sugar cane - Biological control
Resumo:
This study evaluated the effects on the development and predatory capacity of Podisus nigrispinus fed on Spodoptera frugiperda that have ingested different concentrations of neem oil. The predatory capacity of Podisus nigrispinus was assessed, separating nymphs (fourth instar) and adults (males and females). The treatments consisted of S. frugiperda larvae reared in neem oil aqueous solutions (0.077, 0.359 and 0.599%), deltamethrin EC 25 (0.100%) and control arranged in a completely randomized design, with ten replicates. Insects were offered three larval densities (one, three and six), in the third or fourth instars. The predated larvae were examined at 24 and 48 hours after the beginning of the experiment. Biological parameters of Podisus nigrispinus were evaluated in groups of ten second-instar nymphs transferred to pots, in five replicates. Insects were offered 2-6 third and/or fourth-instar larvae reared in the same neem oil concentrations in a completely randomized design. The following parameters were evaluated: duration of each nymph stage (days), nymph mortality (%), weight of fifth-instar nymphs (mg), sex ratio, weight of males and females (mg) and longevity of unfed adults (days). The predatory capacity of nymphs and adults of Podisus nigrispinus was influenced by the neem oil at the concentrations of 0.359% and 0.599% in the highest density. The concentration of 0.359% lengthened the nymphal stage and the concentration of 0.599% reduced the weight of males.
Resumo:
Parasitological examinations were carried out on 663 individuals of three different cities of Pernambuco State, Northeastern Brazil: Recife, Palmares and Bodocó. The population from a drought area of Pernambuco State, Bodocó, was investigated for amoebiasis and compared with Recife, metropolitan city (about 1.3 million of inhabitants) and another inland community, Palmares, located inside of the sugar-cane plantation region of the State. No evidence of invasive strains of E. histolytica were found in these inhabitants, provided that the isolated zymodemes I, III, IV, VIII, IX, X, XVII and XVIII are recognized as nonpathogenic strains of E. histolytica. Furthermore, the prevalence of intestinal helminths and other protozoan infections showed that these individuals are infected by other agents responsible for diarrhoeal diseases.
Resumo:
In this present study, preliminary data was obtained regarding the mortality rate of the Amazonian anophelines, Anopheles nuneztovari, Anopheles darlingi and Anopheles braziliensis when subjected to treatment with Bacillus sphaericus strain 2362, the WHO standard strain. Initially, experiments were conducted to test the mortality rate of the three species of anopheline larvae. The third larval instar of An. nuneztovari and the second and third larval instars of An. darlingi proved to be the least susceptible. In other experiments, the same three mosquito species were tested with the standard strain 2362, An. nuneztovari was the least susceptible to this insect pathogen, while An. braziliensis was the most susceptible. This latter species showed a difference in the level of LC50 concentration, when compared to the former, of 2.4, 2.5 and 1.8 in readings taken 24, 48 and 72 hours after exposure to the bacillus.
Resumo:
Resistance of the dengue vector to temephos stimulated its substitution for Bacillus thuringiensis var. israelensis (Bti) since 2001 in Brazil. The persistence of the two Bti formulations employed at that time by the Health Ministry, Vectobac G and Aquabac G, was assayed under laboratory and outdoor conditions. Both formulations were tested at 0.2 g/10 liters of water, the same concentration applied in the field for vector control. The tests were done against Ae. aegypti third instar larvae (Rockefeller strain). In the laboratory, Vectobac G and Aquabac G caused at least 95% mortality until 101 and 45 days after treatment, respectively. In the outdoor assays, test containers of different materials were treated with either formulation and placed in a shaded area. Larvae were introduced each 3-6 days and mortality was recorded 24 and 48 hours later. In the first set of assays, performed in June 2001, mortality levels of 70% or more were attained for 2-5 weeks for both formulations in all containers. The exception was for the iron one that rusted, resulting in low mortality after seven days. In the second set of assays (August 2001), 70% mortality was attained for just 1-2 weeks for all the containers and both formulations.
Resumo:
AbstractINTRODUCTION: This study evaluated whether different strains of Brevibacillus laterosporus could be used to control larvae of the blowfly Chrysomya megacephala , a pest that affects both human and animal health.METHODS:Mortality rates were recorded after 1-mL suspensions of sporulated cells of 14 different strains of B. laterosporus were added to 2.5g of premixed diet consisting of rotting ground beef fed to first instar larvae of C. megacephala . All bioassays were performed using 10 larvae per strain, with a minimum of three replicates for each bioassay. Larval mortality was recorded daily up to seven days.RESULTS:Strains Bon 707, IGM 16-92, and Shi 3 showed the highest toxicity toward the larvae producing 70.5%, 64.5%, and 51.6% of larval mortality, respectively, which was significantly higher than that in the control group (p < 0.05). In contrast, strains NRS 1642, NRS 661, NRS 590 BL 856, NRS 342, ATCC 6457, Bon 712, and NRS 1247 showed limited or no pathogenic activity against the target larvae.CONCLUSIONS:Our preliminary data indicated that B. laterosporus could be used to develop bioinsecticides against C. megacephala .
Resumo:
1 - Colour, by itself, does not constitute a solid ground for judging of the age of a brandy because the more or less pronounced colour it acquires through aging can also be obtained by the addition of oack essence to newly distilled brandy. 2 - Urder the same conditions, colour intensity of a brandy wiU depend upon the nature of the wood and the condition of the storage. 3 - In accordance with the experimental results obtained by the present writers it rests no doubt that fermentation facility ferment resistence, produce and quality of the brendy all are factors depending upon the variety of the sugar cane. In addition, the authors presume that the variety of sugar cane has also influence upon the alteration of composition of the brandy submitted to aging. 4 - All aging phenomena of the brandy are accompanied by volume decreasing, what happens in a slow and continuous manner depending upon storage and environment conditions 5 - During brandy aging the alcoholic degree is greatly af- fected by evaporation, increasing or decreasing in accordance to the hygrometric state of the air and the teriperature in the place where the tuns are stored. 6 - The specific weight of the brandy is inversely proportio- nal to its alcoholic degree, but directly proportional to the extracts since the latter indicates the amount of dissolved residues. 7 - Brandy which shows high specific weight together with high alcoholic degree cannot be considered as aged. It may, however, be takens for brandy artificially coloved in order to conceal its actual age. 8 - The amount of extracts increases with aging, since it is the result of the solvent action of the brandy upon the soluble extractive substances of the wood. Notwithstanding that the extract, considered alone, has no value in determining the age of a brandy, since nothing easier is ohan to nake it change artificially. 9 -During aging the brandy get acidity in physiological as well as in physical way, but never by the action of microorganisms. 10 - The estturs produced during aging by the action of acids upon alcohols are the mean factors of the savour (bouquet) of a brandy and therefore every thing shall be done tor fhr estherification of a preserved brandy being not limited. 11 - Aeration increases esther formation, reduces the aging- time and turn better the taste qualities of the brandy. 12 - Due to the great proportion of high alcohols ordinarily found in the brandy, their analytical discrimination will be greatly important. 13 - The high alcohols are not responsable for the disastrous consequences of the alcoholism, but the high percentage of uthyl alcohol present in the brandy. 14 - The aldehydes appear always in high rate in the brazilian brandys in consequence of some intermediary products of the oxydation of the alcohols being left in the brandys during aging. 15 - The age has little or no influence on the quantity of phurphurol present in a brandy whose amount varies greatly the manner in which the wines to be distilled are treated. Wines centrifugalized or filtered before distillation always give rise to brandys poorer in phurphurol as compared with those distilled without these treatments. 16 - Though greatly variable, brandys of good qualities generally show a high residues coefficient, never under 200 mmg 17 - Lusson - Rocques oxydation coefficient cannot be indis- criminately applied to any brandy class, being, on the contrary, specifically destined to cognacs.
Resumo:
Considering the economic importance of the sugar industry among ourselves, the authors carried out a field experiment (Latin square) with Co 290 sugar cane, on a white sandy soil of Piracicaba, State of São Paulo, Brazil, applying NaCl in increasing rates (from 6.8 to 54.5 grams per plant), in order to study the effects of chlorides, on productivity and on the composition of juice. No toxic or stimulating effect was found, and there was no change in yield, in degree of purity of the juice, in general aspect of plants or in colour of leaves and culms. No difference was observed between potassium sulphate or chloride, as source of potash for sugar cane culture. Data collected and the literature cited suggest: (a) that the use of the variety Co 290 is indicated for soils rich in chlorine, such as the saline soils of the North-east and Atlantic Coast of Brazil; (b) that it is necessary to extend studies in Research Institutes and Agricultural Experiment Stations of the country to verify the behaviour of other varieties of sugar cane in the types of soils mentioned, especially with respect their yielding capacity. The authors are already planning such investigations.
Resumo:
The A. A. compare corn silage (Zea mays L.) with sugar cane (Saccharum sinensis Roxb.) in the supplementary feeding of dairy cow. Both the feeds were studied in relation to the following points: composition and nutritive value; influence of milk production, milk fat, milk acidity and body weight; cost of production. Both corn silage and sugar cane were analysed by ordinary methods, and their digestibility was determined by means of digestibility coefficients; their composition and nutritive value are, practically, equivalent, but silage showed slight superiority. The feeding experiment was carried out with two groups of six Holstein Friesian cows each, of the Escola Superior de Agricultura "Luiz de Queiroz" herd. Both groups were fed with the same basic concentrates mixture, calculeted according to MORRISON. During the various periods of the experiment, only the roughage supplement varied. The supplementary feeding consisted of 15 kg of chopped sugar cane or corn, silage, per day and per cow, given in two daily meals in the barn. At 4,30 p.m., the cows are set free in the field, where they pass the over night. The experiment was divided into six periods, in which there was a gradative change of the supplementary feeding between the two groups. The milk was weighed every day; the analysis of milk fat and acidity and the weighing of the animals, were made only on the first three days of every week. The analysis of data showed that: a) Milk production was increased significantly by silage feeding; b) The ri was not any influence on milk fat; c) The silage caused higher milk acidity; d) The sugar cane gave a greater increase of body weight. The cost of production of corn silage was 2,12 time higher, than sugar cane, hence, although the silage gave a higher milk production, its use is not economical, compared with sugar cane, in our conditions.
Resumo:
This paper deals with a field trial executed to compare cotton seed and cacau meals in the fertilization of sugar cane, variety Co290. The design chosen was a latin square of 6 x 6. The following conclusions can be drawn: 1. Cottonseed meal revealed to be statistically superior to cacau meal, being even superior to the mineral fertilizers plus cacau meal treatment. 2. From an economical point of view cotton seed meal, as a fertilizer for sugar cane, can not be substituted by cacau meal.
Resumo:
1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.
Resumo:
The author studies, with the aid of Mitscherlich's law, two experiments of sugar cane fertilization with vinasse. The first one, carried out in Piracicaba, State of S. Paulo, by ARRUDA, gave the following yields. No vinasse 47.0 tons/ha. 76.0 tons/ha. 250 c.m./ha. of vinasse 75.0 do. 112.0 do. 500 do. 90.0 do. 112.0 do. 1000 do. 98.0 do. 107.0 do. Data without NPK were appropriate for the fitting of the law, the equation of which was found to be: y = 100.8 [1 - 10 -0.00132 (x + 206) ], where y is measured in metric tons/hectare, and x in cubic meters/hectare. The optimum amount of vinasse to be used is given by the formula x* = 117.2 + 1 log w u , ______ ____ 0.00132 250 t being u the response to the standard dressing of 250 cubic meters/hectare of vinasse, w the price per ton of sugar cane, and t the price per cubic meter for the transportation of vinasse. In Pernambuco, a 3(4) NPK vinasse experiment gave the following mean yields: No vinasse 41.0 tons/hectare 250 cm./ha. of vinasse 108.3 do. 500 do. 134.3 do. The equation obtained was now y = 150.7 [1 - 10 -000165 (x + 84)], being the most profitable level of vinasse x* = 115.2 + 1 log w u , _______ ____ 0.00165 250 t One should notice the close agreement of the coefficients c (0.00132 in S. Paulo and 0.00165 in Pernambuco). Given the prices of Cr$ 20.00 per cubic meter for the transportation of vinasse (in trucks) and Cr$ 250.00 per ton of sugar cane (uncut, in the fields) the most profitable dressings are: 236 c.m./ha. of vinasse in S. Paulo, and 434 c.m./ha. in Pernambuco.
Resumo:
This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.
Resumo:
The authors carried out joint analyses of data referring to six experiments with varieties of sugar cane, carried out by SEGALLA and ALVAREZ in six locations in the State of S. Paulo, Brasil. The analyses showed that for cane or sugar yield, either for plant-cane or for plant-cane together with the first two ratoons, the best five varieties were CB 40-69, CB 41-76, CB 40-13, CB 40-19 and Co 419. The yield of sugar cane/for all varieties studied is given below, in metric tons produced in plant cane and the first two ratoons. Varieties Yield of sugar cane (tons/hectare) CB 40-69 205.2 CB 41-76 204.5 CB 40-13 199.4 CB 40-19 192.4 Co 419 192.1 CB 38-30 182.1 CB 41-70 181.5 Co 413 177.5 CB 38-22 174.4 CB 36-14 172.8 Co 290 166.6 CB 41-35 147.9 The least significant difference by Tukey's test, at the 5% level of probability, is A = 28.3 metric tons/hectare.
Resumo:
I. This paper deals with an experiment carried out to evaluate the effect of the sugar cane upper end on the composition of the sugar cane harvest as a raw material for the sugar industry. The variety studied was Co 421. The authors intend to study other varieties in the future. The data were collected from plant cane, at intervals of two weeks, always from the same field, from a small central area of 3.000 square meters approximately. Sixty (60) stalks were cut in each occasion, randomly chosen from the whole area. They were afterwards separated into three groups of 20 stalks, one for each of the treatments, namely: a) Complete stalks, with no leaves or sheaths. b) Stalks harvested by the technique of REYNOSO, that is, as usually done in practice. c) Stalks with the tops completely cut out, that is, cut by technique of REYNOSO and then with 3 other top internodes eliminated. The treatments caused significant differences on the following technological characteristics: a) Weight b) Cane pol c) Available sucrose (pol) per cent cane d) Cane juice pol e) Saline coefficient of juice. II. Except for weight, all changes were favorable to treatment c, even if with differences relatively slight, in percentage. IIII. Treatment differences for cane fiber, brix, reducing sugars, juice ashes, coefficient of purity and glucose coefficient were not significant. IV. Time of harvest was an important factor affecting the composition of the cane and of the juice. V. On the average the available sucrose of cane for treatments, with an standard error of 0.13%, was: Treatment c 13.05% Treatment b 12.65% Treatment a 12.53% This shows that there is no sound basis for the heavy fines applied by some sugar mills to planters who do not cut low enough the tops of the cane stalks.
Resumo:
At the 2nd. Department of Zootechny of the E. S. A. L. Q., in Piracicaba, between 1953 and 1955 an experiment of sugar cane varieties was carried out, with the objective of discovering varieties to substitute "Taquara" (the variety most widely used) and Co 290 (the most recommended). The former was condemned as being too susceptible to cane smut and the latter showes signs if degeneracy. In the experiment, 8 varieties were used with 3 replications in randomized blocks, in 3 rows each. The cane was crop not in the same period, but when they were at comparable ripeness (70 cm of apparent culm). They were crop twice during the year, with a sharp hoe near the soil. The summary of the results and the statistical analyses are shown in tables 1 to 3, showing the possibility of there being 3 groups: A superior one composed of Co 419, a median one, in decreasing order of production, composed of Kassoer, CB 40-69. Co 413, IAC 36-25 and POJ 161 and an inferior group composed of Co 290 and Taquara. There is a possibility that POJ 161 belongs to the last group. Nevertheless, this variety is not recommend because of its susceptibility to smut. As Kassoer is more healthy, vigorous and enduring than Co 419 and other varieties, it is shown recommendable. IAC 36-25 is being recommended presently for forage since its productions is lower than Kassoer, placing 5th productivity, although statistical significance was not detected. As our final conclusions, Co 419, Kassoer, CB 40-69, Co 413 and IAC 36-25 can be planted as forage while POJ 161, Co 290 and Taquara should not. The last two were exactly those used as forage reserve in the 2nd. Department at the beginning of the experiment.