111 resultados para STIMulate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper reviews work from our laboratories evaluating the importance of adrenal cortical hormones in acidification by proximal and cortical distal tubules. Proximal acidification was determined by stationary microperfusion, and measurement of bicarbonate reabsorption using luminal pH determination was performed with H+-ion-sensitive microelectrodes. Rats were adrenalectomized (ADX) 48 h before the experiments, and corticosteroids (aldosterone (A), corticosterone (B), and 18-OH corticosterone (18-OH-B)) were injected intramuscularly 100 and 40 min before the experiments. In ADX rats stationary pH increased significantly to 7.03 as compared to sham-operated rats (6.78). Bicarbonate reabsorption decreased from 2.65 &plusmn; 0.18 in sham-operated rats to 0.50 &plusmn; 0.07 nmol cm-2 s-1 after ADX. The administration of the three hormones stimulated proximal tubule acidification, reaching, however, only 47.2% of the sham values in aldosterone-treated rats. Distal nephron acidification was studied by measuring urine minus blood pCO2 differences (U-B pCO2) in bicarbonate-loaded rats treated as above. This pCO2 difference is used as a measure of the distal nephron ability to secrete H+ ions into an alkaline urine. U-B pCO2 decreased significantly from 39.9 &plusmn; 1.26 to 11.9 &plusmn; 1.99 mmHg in ADX rats. When corticosteroids were given to ADX rats before the experiment, U-B pCO2 increased significantly, but reached control levels only when aldosterone (two 3-&micro;g doses per rat) plus corticosterone (220 &micro;g) were given together. In order to control for the effect of aldosterone on distal transepithelial potential difference one group of rats was treated with amiloride, which blocks distal sodium channels. Amiloride-treated rats still showed a significant reduction in U-B pCO2 after ADX. Only corticosterone and 18-OH-B but not aldosterone increased U-B pCO2 back to the levels of sham-operated rats. These results show that corticosteroids stimulate renal tubule acidification both in proximal and distal nephrons and provide some clues about the mechanism of action of these steroids

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 &micro;M) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 &micro;M) and n-propyl gallate (NPG) (100 &micro;M), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 &micro;M), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI); crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35%) and small intestine (from 40 to 20%) of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5%) and in the distal segments of the small intestine (from 36-40 to 24-32%). In contrast, the LI of the epithelia of the esophagus (5%) and of all small intestine segments (around 30%) of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 µm in 14- and 22-day-old rats, respectively). Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 µm) and 18-day-old rats (from 480 to 360 µm). The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages are important components of natural immunity involved in inhibition of tumor growth and destruction of tumor cells. It is known that these cells can be activated for tumoricidal activity by lymphokines and bacterial products. We investigated whether YAC-1 tumor cells infected with Mycoplasma arginini stimulate nitric oxide (NO) release and macrophage cytotoxic activity. Thioglycollate-elicited macrophages from male BALB/c mice were co-cultured for 20 h with YAC-1 tumor cells infected or not with Mycoplasma arginini. The cytotoxic activity was evaluated by MTT assay and nitrite levels were determined with the Griess reagent. Thioglycollate-elicited macrophages co-cultured with noninfected YAC-1 cells showed low cytotoxic activity (34.7 ± 8.6%) and low production of NO (4.7 ± 3.1 µM NO2-). These macrophages co-cultured with mycoplasma-infected YAC-1 cells showed significantly higher cytotoxic activity (61.4 ± 9.1%; P<0.05) and higher NO production (48.5 ± 13 µM NO2-; P<0.05). Addition of L-NAME (10 mM), an inhibitor of NO synthesis, to these co-cultures reduced the cytotoxic activity to 37.4 ± 2% (P<0.05) and NO production to 3 ± 4 µM NO2- (P<0.05). The present data show that Mycoplasma arginini is able to induce macrophage cytotoxic activity and that this activity is partially mediated by NO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is an extremely important and versatile messenger in biological systems. It has been identified as a cytotoxic factor in the immune system, presenting anti- or pro-inflammatory properties under different circumstances. In murine monocytes and macrophages, stimuli by cytokines or lipopolysaccharide (LPS) are necessary for inducing the immunologic isoform of the enzyme responsible for the high-output production of NO, nitric oxide synthase (iNOS). With respect to human cells, however, LPS seems not to stimulate NO production in the same way. Addressing this issue, we demonstrate here that peripheral blood mononuclear cells (PBMC) obtained from schistosomiasis-infected patients and cultivated with parasite antigens in the in vitro granuloma (IVG) reaction produced more nitrite in the absence of LPS. Thus, LPS-induced nitrite levels are easily detectable, although lower than those detected only with antigenic stimulation. Concomitant addition of LPS and L-N-arginine methyl ester (L-NAME) restored the ability to produce detectable levels of nitrite, which had been lost with L-NAME treatment. In addition, LPS caused a mild decrease of the IVG reaction and its association with L-NAME was responsible for reversal of the L-NAME-exacerbating effect on the IVG reaction. These results show that LPS alone is not as good an NO inducer in human cells as it is in rodent cells or cell lines. Moreover, they provide evidence for interactions between LPS and NO inhibitors that require further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main characteristic of the nursing Interactive Observation Scale for Psychiatric Inpatients (IOSPI) is the necessity of interaction between raters and patients during assessment. The aim of this study was to evaluate the reliability and validity of the scale in the "real" world of daily ward practice and to determine whether the IOSPI can increase the interaction time between raters and patients and influence the raters' opinion about mental illness. All inpatients of a general university hospital psychiatric ward were assessed daily over a period of two months by 9 nursing aides during the morning and afternoon shifts, with 273 pairs of daily observations. Once a week the patients were interviewed by a psychiatrist who filled in the Brief Psychiatric Rating Scale (BPRS). The IOSPI total score was found to show significant test-retest reliability (interclass correlation coefficient = 0.83) and significant correlation with the BPRS total score (r = 0.69), meeting the criteria of concurrent validity. The instrument can also discriminate between patients in need of further inpatient treatment from those about to be discharged (negative predictive value for discharge = 0.91). Using this scale, the interaction time between nursing aides and patients increased significantly (t = 2.93, P<0.05) and their opinion about the mental illness changed. The "social restrictiveness" factor of the opinion scale about mental illness showed a significant reduction (t = 4.27, P<0.01) and the "interpersonal etiology" factor tended to increase (t = 1.98, P = 0.08). The IOSPI was confirmed as a reliable and valid scale and as an efficient tool to stimulate the therapeutic attitudes of the nursing staff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of high concentrations of KCl in releasing noradrenaline from sympathetic nerves and its actions on postsynaptic alpha-adrenoceptors. We measured the isotonic contractions induced by KCl in the isolated rat anococcygeus muscle under different experimental conditions. The contractile responses induced by KCl were inhibited by alpha-adrenoceptor antagonists in 2.5 mM Ca2+ solution. Prazosin reduced the maximum effect from 100 to 53.9 ± 10.2% (P<0.05) while the pD2 values were not changed. The contractile responses induced by KCl were abolished by prazosin in Ca2+-free solution (P<0.05). Treatment of the rats with reserpine reduced the maximum effect induced by KCl as compared to the contractile responses induced by acetylcholine from 339.5 ± 157.8 to 167.3 ± 65.5% (P<0.05), and increased the pD2 from 1.57 ± 0.01 to 1.65 ± 0.006 (P<0.05), but abolished the inhibitory effect of prazosin (P<0.05). In contrast, L-NAME increased the contractile responses induced by 120 mM KCl by 6.2 ± 2.3% (P<0.05), indicating that KCl could stimulate the neurons that release nitric oxide, an inhibitory component of the contractile response induced by KCl. Our results indicate that high concentrations of KCl induce the release of noradrenaline from noradrenergic neurons, which interacts with alpha1-adrenoceptors in smooth muscle cells, producing a contractile response in 2.5 mM Ca2+ (100%) and in Ca2+-free solution, part of which is due to a direct effect of KCl on the rat anococcygeus muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trehalose biosynthesis and its hydrolysis have been extensively studied in yeast, but few reports have addressed the catabolism of exogenously supplied trehalose. Here we report the catabolism of exogenous trehalose by Candida utilis. In contrast to the biphasic growth in glucose, the growth of C. utilis in a mineral medium with trehalose as the sole carbon and energy source is aerobic and exhibits the Kluyver effect. Trehalose is transported into the cell by an inducible trehalose transporter (K M of 8 mM and V MAX of 1.8 µmol trehalose min-1 mg cell (dry weight)-1. The activity of the trehalose transporter is high in cells growing in media containing trehalose or maltose and very low or absent during the growth in glucose or glycerol. Similarly, total trehalase activity was increased from about 1.0 mU/mg protein in cells growing in glucose to 39.0 and 56.2 mU/mg protein in cells growing in maltose and trehalose, respectively. Acidic and neutral trehalase activities increased during the growth in trehalose, with neutral trehalase contributing to about 70% of the total activity. In addition to the increased activities of the trehalose transporter and trehalases, growth in trehalose promoted the increase in the activity of alpha-glucosidase and the maltose transporter. These results clearly indicate that maltose and trehalose promote the increase of the enzymatic activities necessary to their catabolism but are also able to stimulate each other's catabolism, as reported to occur in Escherichia coli. We show here for the first time that trehalose induces the catabolism of maltose in yeast.