87 resultados para SELECTIVE OXIDATION
Resumo:
We previously described a selective bile duct ligation model to elucidate the process of hepatic fibrogenesis in children with biliary atresia or intrahepatic biliary stenosis. Using this model, we identified changes in the expression of alpha smooth muscle actin (α-SMA) both in the obstructed parenchyma and in the hepatic parenchyma adjacent to the obstruction. However, the expression profiles of desmin and TGF-β1, molecules known to be involved in hepatic fibrogenesis, were unchanged when analyzed by semiquantitative polymerase chain reaction (RT-PCR). Thus, the molecular mechanisms involved in the modulation of liver fibrosis in this experimental model are not fully understood. This study aimed to evaluate the molecular changes in an experimental model of selective bile duct ligation and to compare the gene expression changes observed in RT-PCR and in real-time quantitative PCR (qRT‐PCR). Twenty-eight Wistar rats of both sexes and weaning age (21-23 days old) were used. The rats were separated into groups that were assessed 7 or 60 days after selective biliary duct ligation. The expression of desmin, α-SMA and TGF-β1 was examined in tissue from hepatic parenchyma with biliary obstruction (BO) and in hepatic parenchyma without biliary obstruction (WBO), using RT-PCR and qRT‐PCR. The results obtained in this study using these two methods were significantly different. The BO parenchyma had a more severe fibrogenic reaction, with increased α-SMA and TGF-β1 expression after 7 days. The WBO parenchyma presented a later, fibrotic response, with increased desmin expression 7 days after surgery and increased α-SMA 60 days after surgery. The qRT‐PCR technique was more sensitive to expression changes than the semiquantitative method.
Resumo:
Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.
Resumo:
Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.
Resumo:
Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene that encodes epidermal growth factor receptor (EGFR). ErbB1 amplification and mutation are associated with tumor aggressiveness and low response to therapy. The aim of the present study was to design a schedule to synchronize the cell cycle of A549 cell line (a non-small cell lung cancer) and to analyze the possible association between the micronuclei (MNs) and the extrusion of ErbB1 gene extra-copies. After double blocking, by the process of fetal bovine serum deprivation and vincristine treatment, MNs formation was monitored with 5-bromo-2-deoxyuridine (BrdU) incorporation, which is an S-phase marker. Statistical analyses allowed us to infer that MNs may arise both in mitosis as well as in interphase. The MNs were able to replicate their DNA and this process seemed to be non-synchronous with the main cell nuclei. The presence of ErbB1 gene in the MNs was evaluated by fluorescent in situ hybridization (FISH). ErbB1 sequences were detected in the MNs, but a relation between the MNs formation and extrusion of amplified ErbB1could not be established. The present study sought to elucidate the meaning of MNs formation and its association with the elimination of oncogenes or other amplified sequences from the tumor cells.
Resumo:
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.
Resumo:
There is evidence for participation of peripheral β-adrenoceptors in delayed liquid gastric emptying (GE) induced in rats by dipyrone (Dp), 4-aminoantipyrine (AA), and antipyrine (At). The present study aimed to determine whether β-adrenoceptors are involved in delayed GE induced by phenylpyrazole derivatives and the role of the prevertebral sympathetic nervous system in this condition. Male Wistar rats weighing 220-280 g were used in the study. In the first experiment rats were intravenously pretreated with vehicle (V), atenolol 30 mg/kg (ATE, β1-adrenergic antagonist), or butoxamine 25 mg/kg (BUT, β2-adrenergic antagonist). In the second experiment, rats were pretreated with V or SR59230A 2 mg/kg (SRA, β3-adrenergic antagonist). In the third experiment, rats were subjected to surgical resection of the celiac-superior mesenteric ganglion complex or to sham surgery. The groups were intravenously treated with saline (S), 240 µmol/kg Dp, AA, or At, 15 min after pretreatment with the antagonists or V and nine days after surgery. GE was determined 10 min later by measuring the percentage of gastric retention (%GR) of saline labeled with phenol red 10 min after gavage. The %GR (means±SE, n=6) values indicated that BUT abolished the effect of Dp (BUT+Dp vs V+Dp: 35.0%±5.1% vs 56.4%±2.7%) and At (BUT+At vs V+At: 33.5%±4.7% vs 52.9%±2.6%) on GE, and significantly reduced (P<0.05) the effect of AA (BUT+AA vs V+AA: 48.0%±5.0% vs 65.2%±3.8%). ATE, SRA, and sympathectomy did not modify the effects of treatments. These results suggest that β2-adrenoceptor activation occurred in delayed liquid gastric emptying induced by the phenylpyrazole derivatives dipyrone, 4-aminoantipyrine, and antipyrine. Additionally, the released neurotransmitter did not originate in the celiac-superior mesenteric ganglion complex.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.
Resumo:
The true spinach (Spinacia oleracea) does not grow well in warm climates and for that reason is not commercialized in Brazil. Instead, a spinach substitute (Tetragonia expansa), originally from New Zealand, is widely used in the country. There is scant information on the mineral profile and none on the soluble mineral fraction of this vegetable. The solubility of a mineral is one of the important factors for its absorption. For this reason, the calcium, magnesium, iron, manganese, copper, zinc, potassium, and sodium soluble fractions in the raw spinach substitute were determined and the effect of blanching times on the solubility of these minerals was investigated. Blanching times of 1, 5, and 15 minutes were employed. The magnesium, manganese, potassium, and sodium soluble fractions increased sizably with shorter blanching time. Longer blanching time (15 minutes) caused large losses of minerals. The soluble mineral fractions can contribute poorly to diet in terms of potassium, magnesium, manganese, and zinc. The spinach substitute cannot be considered a dietary source of calcium, iron and copper due to the insolubility of these minerals in the vegetable, possibly caused by the large oxalate content.
Resumo:
Limonene is a monoterpene obtained in large amounts from essential oils and is used as a raw material for the synthesis of flavors and fine chemicals. Several pathways or routes for the microbial degradation of limonene making use of the cytochrome P450-dependent monooxygenases have been described. In this study, we present a fermentative screening of microorganisms in order to verify their ability to perform the desirable conversion. In parallel, the PCR technique was used to select the microorganisms that contain the limC gene, which is responsible for the conversion of carveol to carvone. The microorganisms selected by PCR were not able to bioconvert limonene. From this result, we can suppose that these strains do not have the gene that codifies the enzyme responsible for the transformation of limonene into carveol. The results obtained in the fermentative screening showed that 4 microorganisms were able to bioconvert limonene into carveol. In addition, the amplification results showed the presence of fragments of 800 pb, expected for the limC gene. Therefore, the results obtained in the bioconversion and evaluation of the limC gene did not allow a correlation showing that these strains do not contain all the enzymes responsible for the conversion of limonene to carvone.
Resumo:
The effect of two levels (0.5 and 1%) of hydroalcoholic extract of Achyrocline satureioides on the safety (TBARS values) and quality (pH, water activity, colour, weight loss, and sensorial attributes) of salami was evaluated. The addition of Achyrocline satureioides extract decreased TBARS values significantly during the storage of salami when compared to the control, which was elaborated without Achyrocline satureioides extract. The treatment with 1% of "Marcela" extract showed larger lipid stability than that of the lot with 0.5%, However, it presented a decrease (p < 0.05) in the sensorial acceptance. The two levels of "Marcela" extract did not influence pH, water activity, colour, and weight loss significantly. This study indicates that the hydroalcoholic extract of "Marcela" was effective in decreasing the lipid oxidation and at 0.5% it did not alter the sensorial features; therefore, it may be used in salami to provide safer products for the consumers.
Resumo:
Different concentrations of basil essential oil (Ocimum basilicum L.) (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1) were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1) were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant); control (using sodium eritorbate as antioxidant); and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control) and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.
Resumo:
Considering the extensive use of hot peppers and spicy sauces in the Mexican cuisine, in the present paper, three widely consumed Mexican condiments (mole sauce, achiote, and pasilla hot pepper) were analyzed for their total phenols, flavonoids and proanthocyanidins, antioxidant activity, and protective effect against lipid oxidation in chopped pork meat. All samples were extracted first with methanol and then with acetone, and the extracts were compared. Pasilla pepper showed the highest phenolic and flavonoid content in both solvents, followed by mole and achiote. Achiote showed the highest proanthocyanidin concentration. All samples showed high antioxidant activity, and good correlations with phenolic compounds and flavonoids, while no correlation was observed in the case of condensed tannins. Mole sauce methanolic extract showed the highest inhibition of pork meat oxidation, followed by pasilla pepper, and finally achiote paste extracts. These results suggest that these condiments are useful to prevent meat lipid oxidation during storage.