120 resultados para Reagents
Resumo:
The development of modern analytical tools plays an important role in quality control. The main purpose of this study was to explore the use of subcritical water as a versatile analytical tool, employed simultaneously as a reagent and solvent, as well as the application of high temperature-high resolution gas chromatography (HT-HRGC) to develop a procedure for the analysis of triacylglycerides and fatty acids in Azadirachta indica A. Juss. (Neem) oil without the need for solvents, chemical reagents, or catalytic agents. The developed method presented satisfactory results and is in agreement with the concepts of Green Analytical Chemistry (GAC).
Resumo:
This work reports the validation of an analytical UV spectrophotometric method to assay acyclovir in hydrophilic matrices (assay and dissolution studies). The method was linear in the range between 2.5-20 µg mL-1, presenting a good correlation coefficient ( r = 0,9999). Precision and accuracy analysis showed low relative standart deviation (< 2.0 %) and a good recoveries percentual (98.9-100 %). The procedure was linear, accurate, and robust. The method is simple and cheap. It does not use polluting reagents and can be applied in dissolution studies, being an adequate alternative to assay acyclovir in hydrophilic matrices tablets.
Resumo:
The decomposition of detergent powder samples in a microwave oven and autoclave was evaluated. To establish the best experimental conditions a 2(5) factorial design was performed, varying the conditions in autoclave and microwave digestion and flow system parameters for the determination of phosphorus. The best composition was: 0.2 mL sulfuric acid; 500 W power and a 2 min time interval; 6 mmol L-1 of ascorbic acid and 16 mmol L-1 of molybdate to flow system. This factor levels use less reagents than the reference method. No statistically significant differences were found between the autoclave and microwave oven responses at the 95% confidence level.
Resumo:
For determination of aliskiren in commercial samples, an analytical UV spectrophotometric method was developed and validate according to ICH guideline. The method was linear in the range between 40 and 100 μg mL-1 (r² = 0.9997, n = 7) and exhibited suitable specificity, accuracy, precision, and robustness. It is simple, it has low cost, and it has low use polluting reagents. Therefore, the proposed method was successfully applied for the assay and dissolution studies of aliskiren in tablet dosage forms, and the results were compared to a validated RP-LC method, showing non-significant difference (P > 0.05).
Resumo:
Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics.
Resumo:
This article describes the preparation of 5-nitroisatin and of 5-chloroisatin from isonitrosoacetanilide in a single step, using readily available and inexpensive reagents. These reactions require around 90 minutes and may be carried out as an undergraduate experiment, providing an opportunity to discuss the electrophilic aromatic substitution mechanism, as well as spectroscopic techniques for product identification.
Resumo:
One of the most important aspects of chitosan' derivatization depends on the crosslinking of their polymeric chains. This chemical strategy may confer new properties to those derivatives, which can be used to enhance their biotechnological applications. So far, this work aims to discuss some strategies related to the crosslinking of chitosan focusing on reagents, reaction mechanisms and properties/applications of the crosslinked derivatives in several fields of science.
Resumo:
The role of the logistics in the design of synthetic pathways aimed at greenish is discussed. The influence on costs (of reagents, solvents and total), as well as on atomic productivity green metrics (atomic economy and E factor), of the position along the pathway of a step with low yield, or involving high dilution of the reagents or expensive reagents, has been evaluated by calculations on a linear pathway model. The results show the economic importance of Green Chemistry and provide useful information for pathway design or improvement.
Resumo:
Molecular modeling enables the students to visualize the abstract relationships underlying theoretical concepts that explain experimental data on the molecular and atomic levels. With this aim we used the free software "Arguslab 4.0.1" (semi-empirical method) to study the reaction of 1-chloropropane with ethoxide in solution, known to lead to methyl propyl ether, through the S N2 mechanism, and propene, through the E2 mechanism. This tool allows users to calculate some properties (i. e. heat formation or electric charges) and to produce 3D images (molecular geometry, electrostatic potential surface, etc.) that render the comprehension of the factors underlying the reaction's progress, which are related to the structure of the reagents, and the process kinetic clearer and easier to understand by the students
Resumo:
This work applied a 2² factorial design to the optimization of the extraction of seven elements (calcium, magnesium, potassium, iron, zinc, copper and manganese) in brachiaria leaves, determined by flame atomic absorption spectrometry. The factors sample mass and digestion type were evaluated at two levels: 200/500 mg, and dry/wet, respectively. Principal component analysis allowed simultaneous discrimination of all the significant effects in one biplot. Wet digestion and mass of 200 mg were considered the best conditions. The decrease of 60% in sample mass allowed to save costs and reagents. The method was validated through the estimation of figures of merit.
Resumo:
This work presents simple routes to recover iodine compounds from oxidized laboratory chemicals and aqueous solutions (HI and KI) used in laboratory chemistry classes. These routes are based on the oxidation of iodide ions (I-) to iodine (I2) by an oxidant (H2O2) or reduction of oxidized iodine by red phosphorus or hydrazine. Both routes presented high yields. The oxidative route is of general use whereas the reductive one is appropriate for restoring original iodine reagents. Final wastes were generated in low amounts. This work is appropriate for teaching many laboratory techniques (e.g., distillation, titration and filtration) in the chemical laboratory.
Resumo:
In recent years, the introduction of the Green Chemistry concepts in undergraduate chemistry classes has been intensively pursued. In this regard, the two-step preparation of Epoxone (an organocatalyst developed by Shi & col.) from commercial D-fructose, through ketalization of vicinal diols followed by oxidation of a sterically congested secondary alcohol, involves important topics in Organic Chemistry and employs inexpensive and nontoxic reagents. The reactions are easy to perform and the products from both steps are readily obtained as crystalline solids after simple procedures, thus facilitating their chemical characterization.
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
In this educational paper we describe the extraction of lapachol from its natural source according to acid-base concepts in organic chemistry and the use of its derivatives β-lapachone and hydroxy-hydrolapachol to exemplify intramolecular cyclization, carbocation stability, Michael addition reaction and chromatography. The experiments were performed during three different undergraduate organic chemistry laboratory classes using low cost material, while avoiding color reagents for TLC visualization, as well as small-scale column chromatography to isolate the mixture of lapachol and β-lapachone.
Resumo:
A didactic experiment is proposed aimed to extend the Flow Injection Analysis (FIA) based methodology to the area of physical chemistry/chemical reactors for undergraduate labs. Our prime objective was to describe the use of a gradient chamber for determination of the rate constant for the reaction between crystal violet and the hydroxide ion. The study was complemented by determining the effect of temperature on the rate constant. The kinetic parameters, activation energy and reaction rate constant are determined based on an assumption of rate orders. The main didactic advantages of the proposed experimental set-up are the use of less reagents, contributing to a more environmental friendly experiment. The experiment illustrates also the reduction of associated errors and time by using automated analysis owing to decreased operator manipulation.