92 resultados para Quail rearing
Resumo:
One of the most limiting factors affecting the larval rearing of Ucides cordatus in the laboratory is a period of high mortality, which usually occurs late in the course of the larviculture during the metamorphosis from the zoeal to the megalopal phase. The objective of the present research was to analyze the post-embryonic development of U. cordatus on an individual basis and, in particular, to search for patterns linking disturbances in the molting process to the high larval death rates observed in massive larvicultures. A total of 50 larvae were individually reared from hatching to metamorphosis into the megalopal phase under controlled conditions, fed a combination of microalgae and rotifers. The survivorship rate was 70% until zoea V. The 35 surviving zoea V larvae followed two different pathways. Eleven underwent metamorphosis directly to megalopa, eighteen molted to zoea VI and six died as zoea V. In the last molting event, only two zoea VI larvae reached the megalopal stage, while the remaining sixteen died. In further observation under microscope, 13 of the dead zoea VI showed characteristics of the pre-molt stage and pereiopods disproportionably large in relation to the carapace. The observed pattern resembles the Molt Death Syndrome (MDS) described for other decapod species, in which larvae die in the late pre-molt phase of the molting cycle. We suggest that U. cordatus larvae develop disturbances in the molting process similar to the MDS described for other species and that these disturbances are related to a more complex pathway involving the emergence of larval stage zoea VI.
Resumo:
The Japanese quail Coturnix japonica originated from North Africa, Europe and Asia, is used worldwide as an experimental animal and model for aviculture. The current paper characterizes Eimeria bateri, Eimeria tsunodai and Eimeria uzura recovered from C. japonica. Based on the fact that quails have a global distribution, as are their coccidia, the findings of this study should provide the means for diagnosis of those Eimeria spp. in other regions and continents. Eimeria bateri showed the greatest intensity of infection and shed oocysts from the fourth day after infection; in contrast, E. tsunodai and E. uzura shed oocysts from the fifth day after infection. The three species shared a high degree of similarity and were all polymorphic. Yet, the application of line regressions, histograms and ANOVA provided means for the identification of these species. Finally, the algorithm was very efficient since verified that resultant values were not superimposed.
Resumo:
The episodes of diarrhea caused by neonatal bovine rotavirus group A (BoRVA) constitute one of the major health problems in the calf rearing worldwide. The main G (VP7) and P (VP4) genotypes of BoRVA strains involved in the etiology of diarrhea in calves are G6P[1], G10P[11], G6P[5], and G8P[1]. However, less frequently, other G and P genotypes have been described in BoRVA strains identified in diarrheic fecal samples of calves. This study describes the identification and molecular characterization of an emerging genotype (G6P[11]) in BoRVA strains involved in the etiology of a diarrhea outbreak in beef calves in a cattle herd of high production in extensive management system. The diarrhea outbreak, which showed high morbidity (60%) and lethality (7%) rates, occurred in calves (n= 384) Nelore (Bos indicus) up to 30-day-old from the State of Mato Grosso do Sul, Brazil. BoRVA was identified in 80% (16/20) of the fecal samples analyzed by polyacrylamide gel electrophoresis (PAGE) technique. In all PAGE-positive fecal samples were amplified products with 1,062-bp and 876-bp in the RT-PCR assays for VP7 (G type) and VP4 (VP8*) (P type) of BoRVA, respectively. The nucleotide sequence analysis of VP7 and VP4 genes of four wild-type BoRVA strains showed G6-III P[11]-III genotype/lineage. The G6P[11] genotype has been described in RVA strains of human and animal hosts, however, in calves this genotype was only identified in some cross-sectional studies and not as a single cause of diarrhea outbreaks in calves with high morbidity and lethality rates as described in this study. The monitoring of the G and P genotypes of BoRVA strains involved in diarrhea outbreaks in calves is important for both animal and public health by allowing the identification of the most frequent genotypes, the characterization of novel genotypes and to identify reassortments with genotypes described in animal and human hosts. The results of this study show the importance of the monitoring of the genotypes of BoRVA strains involved in episodes of bovine neonatal diarrhea as for characterization of frequency of occurrence and pathogenic potential of uncommon genotypes as for monitoring of the emergency of different BoRVA genotypes not included in commercial vaccines.
Resumo:
Chrysoperla externa (Neuroptera: Chrysopidae) larvae can avoid foraging on plants of Crotalaria juncea (Fabaceae) after the issuance of floral buds, when the prey of Utetheisa ornatrix (Lepidoptera: Arctiidae) incorporate toxic pyrrolizidine alkaloids from this plant. This reduces the predation and favors increasing the number of adults and eggs of this defoliator on crops of this plant. The aim of the present paper was to evaluate some biological and ecological aspects of C. externa and U. ornatrix on the organic crop of C. juncea in the EMBRAPA Maize and Sorghum in Sete Lagoas, Minas Gerais State, Brazil. Chrysoperla externa and U. ornatrix were more abundant in the vegetative and flowering stages of C. juncea, respectively, with caterpillars of this defoliator feeding on leaves and seeds of this plant. The duration of the stages/instars, survival, lifetime fecundity, and oviposition showed that the branches of C. juncea are a suitable food for U. ornatrix. The abundance of adults and larvae of C. externa was lower in the flowering and pods stages of C. juncea, respectively, when the postures of U. ornatrix are present, probably due to the toxicity of the eggs of this prey to this predator. During these stages, C. externa may be reared with alternative hosts, and when the crops of C. juncea are scarce, an artificial diet should be used for rearing this defoliator in the laboratory for biological research and the development of biological control tactics.
Resumo:
Lactating rats show less noise-induced freezing and fewer inhibitory responses on the 6th day post-delivery when submitted to water and food deprivation in a classical conflict paradigm. Lactating mice go more often to the illuminated chamber in a light-dark cage and stay longer in it than virgin females. The present study was designed to assess the influence of this physiological state, i.e. lactation, on the elevated plus maze (EPM) and open-field behavior in adult female rats. Total (TL) and central (CL) locomotion and rearing (RF) frequencies were measured in an open-field. Number of entries into the open and closed arms as well as the time spent in each of these arms were measured in the EPM. Percent time spent and number of entries into the open arms were calculated and compared. In the open-field, TL was significantly decreased (115 ± 10.6 vs 150 ± 11.6) while CL and RF did not differ from those presented by virgin rats. In the EPM, lactating rats displayed a significant reduction in percent time spent (10.9 ± 1.5 vs 17.4 ± 2.3) in the open arms as well as a tendency to a reduction in percent entries into the open arms (35.7 ± 4.7 vs 45.7 ± 4.3). These results show that the physiological state of lactation modulates the open-field and EPM behaviors in rats
Resumo:
Fencamfamine (FCF) is a central stimulant that facilitates central dopaminergic transmission through inhibition of dopamine uptake and enhanced release of the transmitter. We evaluated the changes in the inhibition of uptake and the release of striatal [3H]-dopamine at 9:00 and 21:00 h, times corresponding to maximal and minimal behavioral responses to FCF, respectively. Adult male Wistar rats (200-250 g) maintained on a 12-h light/12-h dark cycle (lights on at 7:00 h) were used. In the behavioral experiments the rats (N = 8 for each group) received FCF (3.5 mg/kg, ip) or saline at 9:00 or 21:00 h. Fifteen minutes after treatment the duration of activity (sniffing, rearing and locomotion) was recorded for 120 min. The basal motor activity was higher (28.6 ± 4.2 vs 8.4 ± 3.5 s) after saline administration at 21:00 h than at 9:00 h. FCF at a single dose significantly enhanced the basal motor activity (38.3 ± 4.5 vs 8.4 ± 3.5 s) and increased the duration of exploratory activity (38.3 ± 4.5 vs 32.1 ± 4.6 s) during the light, but not the dark phase. Two other groups of rats (N = 6 for each group) were decapitated at 9:00 and 21:00 h and striata were dissected for dopamine uptake and release assays. The inhibition of uptake and release of [3H]-dopamine were higher at 9:00 than at 21:00 h, suggesting that uptake inhibition and the release properties of FCF undergo daily variation. These data suggest that the circadian time-dependent effects of FCF might be related to a higher susceptibility of dopamine presynaptic terminals to the action of FCF during the light phase which corresponds to the rats' resting period
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21-day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ± 2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140 ± 11) and 17 (124 ± 12), and 16 (104 ± 9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz-treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
Mother-pup interaction, as well as other behavioral reactions were studied during the lactation period in 24 litters of Wistar rats and their dams fed either a 16% (control - C; 12 litters) or a 6% (malnourished - M; 12 litters) protein diet. The diets were isocaloric. Throughout lactation there was a 36.4% weight loss of M dams and a 63% body weight deficit in the M pups when compared to control pups. During this period, half of the litters were exposed daily to additional tactile stimulation (CS or MS), while the other half were submitted to normal rearing conditions (CN or MN). The tactile stimulation of pups (handling) consisted of holding the animal in one hand and gently touching the dorsal part of the animal's body with the fingers for 3 min. A special camera and a time-lapse video were used to record litter behavior in their home cages. Starting at 6 p.m. and ending at 6 a.m., on days 3, 6, 12, 15, 18 and 21 of lactation, photos were taken at 4-s intervals. An increase in the frequency (154.88 ± 16.19) and duration (455.86 ± 18.05 min) of suckling was observed throughout the lactation period in all groups compared to birth day (frequency 24.88 ± 2.37 and duration 376.76 ± 21.01 min), but the frequency was higher in the C (84.96 ± 8.52) than in the M group (43.13 ± 4.37); however, the M group (470.2 ± 11.87 min) spent more time suckling as compared with the C group (393.67 ± 13.09 min). The M dams showed a decreased frequency of resting position throughout the lactation period (6.5 ± 2.48) compared to birth day (25.42 ± 7.74). Pups from the C group were more frequently observed separated (73.02 ± 4.38) and interacting (258.99 ± 20.61) more with their mothers than the M pups (separated 66.94 ± 5.5 and interacting 165.72 ± 12.05). Tactile stimulation did not interact with diet condition, showing that the kind of stimulation used in the present study did not lead to recovery from the changes induced by protein malnutrition. The changes in mother-pup interaction produced by protein malnutrition of both may represent retardation in neuromotor development and a higher dependence of the pups on their mothers. These changes may represent an important means of energy saving and heat maintenance in malnourished pups.
Resumo:
It has been reported that lead can cause behavioral impairment by inhibiting the N-methyl-D-aspartate (NMDA) receptor complex. MK-801, a noncompetitive NMDA receptor antagonist, exhibits an antidepressant-like action in the forced swimming test. The purpose of the present study was to determine whether subacute lead exposure in adult male Swiss mice weighing 30-35 g causes an antidepressant-like action in a forced swimming test. Mice were injected intraperitoneally (ip) with 10 mg/kg lead acetate or saline daily for 7 consecutive days. Twenty-four hours after the last treatment, the saline and lead-treated mice received an injection of MK-801 (0.01 mg/kg, ip) or saline and were tested in forced swimming and in open-field tests. Immobility time was similarly reduced in the saline-MK-801, Pb-saline and Pb-MK-801 groups compared to the saline-saline group (mean ± SEM; 197.3 ± 18.5, 193.5 ± 15.8, 191.3 ± 12.3 and 264.0 ± 14.4 s, respectively; N = 9). These data indicate that lead may exert its effect on the forced swimming test by directly or indirectly inhibiting the NMDA receptor complex. Lead treatment caused no deficit in memory of habituation and did not affect locomotor activity in an open-field (N = 14). However, mice that received MK-801 after lead exhibited a deficit in habituation (22% reduction in rearing responses between session 3 and 1; N = 14) as compared to control (41% reduction in rearing responses; N = 15), further suggesting that lead may have affected the NMDA receptor activity. Forced-swim immobility in a basin in two daily consecutive sessions was also significantly decreased by lead exposure (mean ± SEM; day 1 = 10.6 ± 3.2, day 2 = 19.6 ± 3.6; N = 16) as compared to control (day 1 = 18.4 ± 3.8, day 2 = 34.0 ± 3.7; N = 17), whereas the number of crossings was not affected by lead treatment, further indicating a specific antidepressant-like action of lead.
Resumo:
The effect of rotifers, Brachionus rotundiformis (S-type), fed three different diets: A (rotifer fed Nannochloropsis oculata), B (rotifer fed N. oculata and baker's yeast, 1:1), and C (rotifer fed N. oculata and baker's yeast, 1:1, and enriched with Selcoâ), was evaluated based on the survival, growth and swim bladder inflation rate of fat snook larvae. Rotifers of treatment A had higher levels (4.58 mg/g dry weight) of eicosapentaenoic acid (EPA) than B (1.81 mg/g dry weight), and similar levels (0.04 and 0.06 mg/g dry weight, respectively) of docosahexaenoic acid (DHA). Rotifers of treatment C had the highest levels of EPA (13.2 mg/g dry weight) and DHA (6.08 mg/g dry weight). Fat snook eggs were obtained by spawning induction with human chorionic gonadotropin. Thirty hours after hatching, 30 larvae/liter were stocked in black cylindric-conical tanks (36-liter capacity). After 14 days of culture, there were no significant differences among treatments. Mean standard length was 3.13 mm for treatment A, 3.17 mm for B, and 3.39 mm for C. Mean survival rates were very low (2.7% for treatment A, 2.3% for B, and 1.8% for C). Swim bladder inflation rates were 34.7% for treatment A, 27.1% for B, and 11.9% for C. The lack of differences in growth and survival among treatments showed that the improvement of the dietary value of rotifer may not have been sufficient to solve the problem of larval rearing. Some other factor, probably pertaining to the quality of the larvae, may have negatively influenced survival.
Resumo:
In this study, the behavioral and electroencephalographic (EEG) analysis of seizures induced by the intrahippocampal injection in rats of granulitoxin, a neurotoxic peptide from the sea anemone Bunodosoma granulifera, was determined. The first alterations occurred during microinjection of granulitoxin (8 µg) into the dorsal hippocampus and consisted of seizure activity that began in the hippocampus and spread rapidly to the occipital cortex. This activity lasted 20-30 s, and during this period the rats presented immobility. During the first 40-50 min after its administration, three to four other similar short EEG seizure periods occurred and the rats presented the following behavioral alterations: akinesia, facial automatisms, head tremor, salivation, rearing, jumping, barrel-rolling, wet dog shakes and forelimb clonic movements. Within 40-50 min, the status epilepticus was established and lasted 8-12 h. These results are similar to those observed in the acute phase of the pilocarpine model of temporal lobe epilepsy and suggest that granulitoxin may be a useful tool not only to study the sodium channels, but also to develop a new experimental model of status epilepticus.
Resumo:
Previous studies have shown that rats withdrawn from long-term treatment with dopamine receptor blockers exhibit dopaminergic supersensitivity, which can be behaviorally evaluated by enhanced general activity observed in an open-field. Recently, it has been reported that co-treatment with the non-benzodiazepine anxiolytic buspirone attenuates the development of haloperidol-induced dopaminergic supersensitivity measured by open-field behavior of rats. The aims of the present study were: 1) to determine, as previously reported for rats, if mice withdrawn from long-term neuroleptic treatment would also develop dopaminergic supersensitivity using open-field behavior as an experimental paradigm, and 2) to examine if acute buspirone administration would attenuate the expression of this behavioral dopaminergic supersensitivity. Withdrawal from long-term haloperidol treatment (2.5 mg/kg, once daily, for 20 days) induced a significant (30%) increase in ambulation frequency (i.e., number of squares crossed in 5-min observation sessions) but did not modify rearing frequency or immobility duration in 3-month-old EPM-M1 male mice observed in the open-field apparatus. Acute intraperitoneal injection of buspirone (3.0 and 10 but not 1.0 mg/kg, 12-13 animals per group) 30 min before open-field exposure abolished the increase in locomotion frequency induced by haloperidol withdrawal. These data suggest that the open-field behavior of mice can be used to detect dopaminergic supersensitivity, whose expression is abolished by acute buspirone administration.
Resumo:
The effects of serum and brain calcium concentration on rat behavior were tested by maintaining animals on either distilled water (N = 60) or water containing 1% calcium gluconate (N = 60) for 3 days. Animals that were maintained on high calcium drinking water presented increased serum calcium levels (control = 10.12 ± 0.46 vs calcium treated = 11.62 ± 0.51 µg/dl). Increase of brain calcium levels was not statistically significant. In the behavioral experiments each rat was used for only one test. Rats that were maintained on high calcium drinking water showed increased open-field behavior of ambulation (20.68%) and rearing (64.57%). On the hole-board, calcium-supplemented animals showed increased head-dip (67%) and head-dipping (126%), suggesting increased ambulatory and exploratory behavior. The time of social interaction was normal in animals maintained on drinking water containing added calcium. Rats supplemented with calcium and submitted to elevated plus-maze tests showed a normal status of anxiety and elevated locomotor activity. We conclude that elevated levels of calcium enhance motor and exploratory behavior of rats without inducing other behavioral alterations. These data suggest the need for a more detailed analysis of several current proposals for the use of calcium therapy in humans, for example in altered blood pressure states, bone mineral metabolism disorders in the elderly, hypocalcemic states, and athletic activities.
Resumo:
Cocaine-induced behavioral sensitization and weight loss were investigated in periadolescent Wistar rats kept with their mothers or subjected to repeated maternal separation. Litters allocated to the separation procedure were placed in a temperature-controlled (33ºC) chamber for 3 h per day from postnatal day 6 (P6) to P20. Non-handled rats were left undisturbed until weaning. Treatments were started on P30-31 and the test was performed on P36-37. Animals received injections of saline or cocaine (10 mg/kg, sc) twice daily for 5 days. On day 6 all animals received saline. On day 7 animals were challenged with 10 mg/kg cocaine and their locomotion was evaluated in activity cages. A third group received saline throughout the 7-day period. Body weights were recorded on P30-31 and P36-37. Two-way ANOVA on body weights showed a main effect of treatment group (F(1,35) = 10.446, P = 0.003; N = 10-12). Non-handled rats treated with cocaine for 5 days gained significantly less weight, while no significant effect was observed in maternally separated rats. Two-way ANOVA revealed a main effect of drug treatment on locomotor activity (F(2,32) = 15.209, P<0.001; N = 6-8), but not on rearing condition (F(1,32)<0.001, P = 0.998). Animals pretreated with cocaine showed a clear behavioral sensitization relative to the saline group. No difference in the magnitude of sensitization was found between separated and non-handled animals. Only the effect of cocaine on weight gain was significantly affected by repeated episodes of early maternal separation during the pre-weaning period.
Resumo:
Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl)-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.