136 resultados para Quad-Tree decomposition
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
The aim of the study was to assess the influence of season and different substrates on rooting of air layers of lychee (Litchi chinensisSonn.) for the production of seedlings to ensure the formation of uniform and productive orchards. Air layers were done in plants of the Bengal cultivar using leafy and healthy woody branches, with about 0.010 to 0.015 m in diameter, in which were performed complete girdling with 0.020 m wide at a distance of 0.30 to 0.40 m below the apex. Then the branches were wrapped in moistened substrate. The layering was made at six times of theyear (January, March, May, July, September and November) and two substrates were used (coconut fiber and sphagnum) in a 6 x 2 factorial design in a randomized block with ten replicates. After 90 days, layers were separated from the matrix plant and evaluated for rooting and callus formation, root number, considering only the primary roots, length, area and volume of the roots, beyond the dry weight of roots and calluses. The months of January, March, September and November showed the best results for all analyzed variables related to rooting. With respect to the substrates, the only difference was in January and March to the root number and dry weight of roots, where the sphagnum showed the best results. The month of July was more conducive to the formation of calluses. The period between September and March was more suitable to the propagation of lychee, when there were rooting percentages above 90%, in addition to the formation of large amount of roots.
Resumo:
The aim of this study was to evaluate the response to phosphorus (P) and potassium (K) fertilization and to establish the critical levels of P and K in the soil and in the plant tissue in pear trees. Two experiments were conducted in São Joaquim (SC), Brazil. In experiment 1, the plants received annually the application of increasing rates of phosphate fertilizer (0, 40, 80, 120 and 160 kg P2O5 ha-1), while in experiment 2, increasing rates of potassium fertilizer (0, 40, 80, 120 and 160 kg K2O ha-1) were applied annually. In the two experiments, soil was collected annually from the 0-10, 10-20 and 0-20 cm layers, and the available P (experiment 1) and exchangeable K (experiment 2) content was analyzed. Whole leaves were collected annually, which were subjected to analysis of total P (experiment 1) and total K (experiment 2) content. The number and weight of the fruits per plant and fruit yield were evaluated. Application of P on the soil planted with pear trees increased the nutrient content in the soil and, in most crop seasons, in the whole leaf, but it did not affect the yield components and fruit yield. The application of K on the soil with pear trees increased the nutrient content in the soil and, in most of the crop seasons, in the whole leaf, but the potassium content in the whole leaf decreased in the crop season with greater fruit yield. The yield components and fruit yield were not affected by K fertilization.
Resumo:
The bridged sulphate complex [Pd2 (C²,dmba) (µ-SO4) (SO2)2] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba)(µ-N3)] 2; (dmba = N,N-dimethylbenzylamine), at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
This study describes a simple, fast and reproducible method using RP-HPLC-UV, in a gradient system, for quantification of reserpine in Rauvolfia sellowii stem bark. The analysis were carried out on a C18 column; mobile phase was water and acetonitrile, and separations were carried out in 10 min, flow rate of 1.0 mL min-1, 25 ºC and 268 nm. The validation data showed that the method was specific, accurate, precise and robust. Results were linear over a range of 0.625-40.0 μg mL-1, and the mean recovery was 95.1%. The amount of reserpine found in the dried stem bark was 0.01% (m/m).
Resumo:
Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Solid-state Ln-Bz compounds, where Ln stands for trivalent lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetric and differential thermal analysis in a CO2 atmosphere were used to study the thermal decomposition of these compounds.
Resumo:
Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.
Resumo:
Necrotrophic parasites of above-ground plant parts survive saprophytically, between growing seasons in host crop residues. In an experiment conducted under field conditions, the time required in months for corn and soybean residues to be completely decomposed was quantified. Residues were laid on the soil surface to simulate no-till farming. Crop debris of the two plant species collected on the harvesting day cut into pieces of 5.0cm-long and a 200g mass was added to nylon mesh bags. At monthly intervals, bags were taken to the laboratory for weighing. Corn residues were decomposed within 37.0 months and those of soybean, within 34.5 months. Hw main necrotrophic fungi diagnosed in the corn residues were Colletotrichum gramicola, Diplodia spp. and Gibberella zeae, and those in soybeans residues were Cercospora kikuchii, Colletotrichum spp, Glomerella sp. and Phomopsis spp. Thus, those periods shoulb be observed in crop rotation aimed at to eliminating contaminated residues and, consequently, the inoculum from the cultivated area.
Resumo:
This study investigated the regeneration variation of five commercially valuable tree species in relation to different intensities of felling in fourteen 4-ha plots in an area under experimental forest management. This experiment was carried out in a typical Amazonian tropical forest sample on "terra-firme," in Manaus (AM). Plots were logged 7 and 8 years (1987 and 1988), or 3 years (1993) before the study. All trees with height greater than 2 m, and diameter at breast height (DBH) smaller than 10 cm were measured. Only Aniba hostmanniana, Ocotea aciphylla, Licaria pachycarpa, Eschweilera coriacea and Goupia glabra were sufficiently common for individual analyses. These species have high timber values in the local market. Eight years after logging, the species responded differently to logging intensities. The numbers of individuals of Goupia glabra and Aniba hostmanniana were positively related to the intensity of logging, while Ocotea aciphylla, Licaria pachycarpa, and Eschweilera coriacea showed no statistically significant response. In the most recently (1993) logged areas, Goupia glabra and Aniba hostmanniana had higher numbers of individuals than the control plots.
Resumo:
The characterization of different ecological groups in a forest formation/succession is unclear. To better define the different successional classes, we have to consider ecophysiological aspects, such as the capacity to use or dissipate the light energy available. The main objective of this work was to assess the chlorophyll fluorescence emission of tropical tree species growing in a gap of a semi-deciduous forest. Three species of different ecological groups were selected: Croton floribundus Spreng. (pioneer, P), Astronium graveolens Jacq. (early secondary, Si), and Esenbeckia febrifuga A. Juss. (late secondary, St). The potential (Fv/Fm) and effective (deltaF/Fm') quantum efficiency of photosystem II, apparent electron transport rate (ETR), non-photochemical (qN) and photochemical (qP) quenching of fluorescence were evaluated, using a modulated fluorometer, between 7:30 and 11:00 h. Values of Fv/Fm remained constant in St, decreasing in P and Si after 9:30 h, indicating the occurrence of photoinhibition. Concerning the measurements taken under light conditions (deltaF/Fm', ETR, qP and qN), P and Si showed better photochemical performance, i.e., values of deltaF/Fm', ETR and qP were higher than St when light intensity was increased. Values of qN indicated that P and Si had an increasing tendency of dissipating the excess of energy absorbed by the leaf, whereas the opposite was found for St. The principal component analysis (PCA), considering all evaluated parameters, showed a clear distinction between St, P and Si, with P and Si being closer. The PCA results suggest that chlorophyll fluorescence may be a potential tool to differentiate tree species from distinct successional groups.