90 resultados para Protease activity
Resumo:
In this study, a methanolic extract from Echinaster (Othilia) echinophorus was evaluated for activity against Leishmania amazonensis. The extract showed activity against the promastigote and amastigote forms with IC50 values of 62.9 and 37.5 μg.mL-1 respectively. This extract showed a moderate toxicity on macrophages from BALB/c mice. A dose of 100 mg/kg/day was effective when administered during 15 days by intraperitoneal route to BALB/c mice infected experimentally.
Resumo:
Terrestrial plants have been demonstrated to be sources of antimalarial compounds. In Cuba, little is known about antimalarial potentials of plant species used as medicinals. For that reason, we evaluated the antimalarial activity of 14 plant species used in Cuba as antimalarial, antipyretic and/or antiparasitic. Hydroalcoholic extracts were prepared and tested in vitro for the antimalarial activity against Plasmodium falciparum Ghana strain and over human cell line MRC-5 to determine cytotoxicity. Parasite multiplication was determined microscopically by the direct count of Giemsa stained parasites. A colorimetric assay was used to quantify cytotoxicity. Nine extracts showed IC50 values lower than 100 µg/mL against P. falciparum, four extracts were classified as marginally active (SI < 4), one as partially active (Parthenium hysterophorus) exhibiting SI equal to 6.2 and two extracts as active (Bambusa vulgaris and Punica granatum), showing SI > 10. B. vulgaris showed the most potent and specific antiplasmodial action (IC50 = 4.7 µg/mL, SI = 28.9). Phytochemical characterization of active extracts confirmed the presence of triterpenoids in B. vulgaris and polar compounds with phenol free groups and fluorescent metabolites in both extracts as major phytocompounds, by thin layer chromatography. In conclusion, antimalarial use of B. vulgaris and P. hysterophorus was validated. B. vulgaris and P. granatum extracts were selected for follow-up because of their strong antimalarial activity.
Resumo:
Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ), ketoconazole (KTZ) and fluconazole (FCZ), were investigated for their abilities to inhibit ß-hematin synthesis (IßHS) and hemoglobin proteolysis (IHbP) in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively) and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively). There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P) of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014) and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.
Resumo:
Surfacen® is an exogenous natural lung surfactant, composed by phospholipids and hydrophobic proteins, which is applied successfully in Newborn Respiratory Distress Syndrome. In this paper, in vitro activity of Surfacen® against Leishmania amazonensis is described. The product showed activity against the amastigote form found in peritoneal macrophages from BALB/c mice, with an IC50 value of 17.9 ± 3.0 µg/mL; while no toxic effect on host cell was observed up to 200 µg/mL. This is the first report about the antileishmanial activity of Surfacen®.
Resumo:
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Resumo:
In this study we investigated the efficacy of hyperbaric oxygen (HBO) therapy, alone or combined with the pentavalent antimonial glucantime on Leishmania amazonensis infection. In parallel, the effect of Brazilian red propolis gel (propain) alone or combined with glucantime on L. amazonensis infection was evaluated. The inhibition of the infection in macrophages treated with glucantime in combination with HBO exposition was greater than that of macrophages treated with glucantime alone or HBO alone. The susceptible mouse strain BALB/c infected in the shaved rump with L. amazonensis treated with glucantime and exposed to HBO showed: time points in the course of the disease in which lesions were smaller than those of mice treated with glucantime alone and revascularization of the skin in the lesion site; interferon-gamma (IFN-g) levels were not elevated in lymph node cells from these animals. Propain alone was not efficient against lesions, although less exudative lesions were observed in animals treated with propain alone or combined with glucantime. These results reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effect of more aggressive HBO, propolis and glucantime therapies on different mouse models of leishmaniasis.
Resumo:
Trypanosoma evansi is a blood protozoan parasite of the genus Trypanosoma which is responsible for surra (Trypanosomosis) in domestic and wild animals. This study addressed apoptotic-like features in Trypanosoma evansi in vitro. The mechanism of parasite death was investigated using staurosporine as an inducing agent. We evaluated its effects through several cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, maintenance of plasma membrane integrity, and mitochondrial trans-membrane potential. For access to these features we have used the flow cytometry and fluorescence microscopy with cultures in the stationary phase and adjusted to a density of 10(6) cells/mL. The apoptotic effect of staurosporine in T. evansi was evaluated at 20 nM final concentration. There was an increase of phosphatidylserine exposure, whereas mitochondrial potential was decreased. Moreover, no evidence of cell permeability increasing with staurosporine was observed in this study, suggesting the absence of a necrotic process. Additional studies are needed to elucidate the possible pathways associated with this form of cell death in this hemoparasite.
Resumo:
The molluscicidal activity of Bauhinia variegata leaf and Mimusops elengi bark was studied against vector snail Lymnaea acuminata. The toxicity of both plants was time and concentration-dependent. Among organic extracts, ethanol extracts of both plants were more toxic. Toxicity of B. variegata leaf ethanolic extract (96h LC50- 14.4 mg/L) was more pronounced than M. elengi bark ethanolic extract (96h LC50-15.0 mg/L). The 24h LC50 of column purified fraction of B. variegata and M. elengi bark were 20.3 mg/L and 18.3 mg/L, respectively. Saponin and quercetin were characterized and identified as active molluscicidal component. Co-migration of saponin (Rf 0.48) and quercetin (Rf 0.52) with column purified bark of M. elengi and leaf of B. variegata on thin layer chromatography demonstrate same Rf value i.e. 0.48 and 0.52, respectively. The present study clearly indicates the possibility of using M. elengi and/or B. variegata as potent molluscicide.
Resumo:
Introduction Sporothrix schenckii is a thermal dimorphic pathogenic fungus causing a subcutaneous mycosis, sporotrichosis. Nitrocoumarin represents a fluorogenic substrate class where the microbial nitroreductase activity produces several derivatives, already used in several other enzyme assays. The objective of this study was the analysis of 6-nitrocoumarin (6-NC) as a substrate to study the nitroreductase activity in Sporothrix schenckii. Methods Thirty-five samples of S. schenckii were cultivated for seven, 14 and 21 days at 35 °C in a microculture containing 6-nitrocoumarin or 6-aminocoumarin (6-AC) dissolved in dimethyl sulfoxide or dimethyl sulfoxide as a negative control, for posterior examination under an epifluorescence microscope. The organic layer of the seven, 14 and 21-day cultures was analyzed by means of direct illumination with 365 nm UV light and by means of elution on G silica gel plate with hexane:ethyl acetate 1:4 unveiled with UV light. Results All of the strains showed the presence of 6-AC (yellow fluorescence) and 6-hydroxylaminocoumarin (blue fluorescence) in thin layer chromatography, which explains the green fluorescence observed in the fungus structure. Conclusion The nitroreductase activity is widely distributed in the S. schenckii complex and 6-NC is a fluorogenic substrate of easy access and applicability for the nitroreductase activity detection.
Resumo:
Currently multiresistant Staphylococcus aureus is one common cause of infections with high rates of morbidity and mortality worldwide, which directs scientific endeavors in search for novel antimicrobials. In this study, nine extracts from Bidens pilosa (root, stem, flower and leaves) and Annona crassiflora (rind fruit, stem, leaves, seed and pulp) were obtained with ethanol: water (7:3, v/v) and their in vitro antibacterial activity evaluated through both the agar diffusion and broth microdilution methods against 60 Oxacillin Resistant S. aureus (ORSA) strains and against S. aureus ATCC6538. The extracts from B. pilosa and A. crassiflora inhibited the growth of the ORSA isolates in both methods. Leaves of B. pilosa presented mean of the inhibition zone diameters significantly higher than chlorexidine 0.12% against ORSA, and the extracts were more active against S. aureus ATCC (p < 0.05). Parallel, toxicity testing by using MTT method and phytochemical screening were assessed, and three extracts (B. pilosa, root and leaf, and A. crassiflora, seed) did not evidence toxicity. On the other hand, the cytotoxic concentrations (CC50 and CC90) for other extracts ranged from 2.06 to 10.77 mg/mL. The presence of variable alkaloids, flavonoids, tannins and saponins was observed, even though there was a total absence of anthraquinones. Thus, the extracts from the leaves of B. pilosa revealed good anti-ORSA activity and did not exhibit toxicity.
Resumo:
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Resumo:
Anthelmintics used for intestinal helminthiasis treatment are generally effective; however, their effectiveness in tissue parasitosis (i.e. visceral toxocariasis) is moderate. The aim of this study was to evaluate the in vitroactivity of lapachol, β-lapachone and phenazines in relation to the viability of Toxocara canis larvae. A concentration of 2 mg/mL (in duplicate) of the compounds was tested using microculture plates containing Toxocara canis larvae in an RPMI-1640 environment, incubated at 37 °C in 5% CO2 tension for 48 hours. In the 2 mg/mL concentration, four phenazines, lapachol and three of its derivatives presented a larvicide/larvistatic activity of 100%. Then, the minimum larvicide/larvistatic concentration (MLC) test was conducted. The compounds that presented the best results were nor-lapachol (MLC, 1 mg/mL), lapachol (MLC 0.5 mg/mL), β-lapachone, and β-C-allyl-lawsone (MLC, 0.25 mg/mL). The larvae exposed to the compounds, at best MLC with 100% in vitro activity larvicide, were inoculated into healthy BALB/c mice and were not capable of causing infection, confirming the larvicide potential in vitro of these compounds.
Resumo:
SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.
Resumo:
Dermatophytosis is a common zoonosis in urban centers. Dogs and cats have played an important role as its disseminators. Environmental decontamination is essential for the prevention of its propagation to humans and animals. However, sanitizers or disinfectants with antifungal activity, currently available, have high toxicity. The present study evaluated the in vitro effects of an extract of citronella (Cymbopogon nardus) on 31 Microsporum canis isolates from animals and home environments. Susceptibility tests were performed based on document M38-A2 (2008) of the Clinical and Laboratory Standards Institute with modifications for natural products. Although susceptibility variation was observed between the fungus tested, the concentrations that inhibited the growth of 50 and 90% of the microorganisms were low (19.5 and 78 µg/mL, respectively). Thus, this citronella extract showed potent fungistatic and fungicide activities against M. canis isolated from animals and home environments. Therefore, it could be an alternative for dermatophytosis prophylaxis in the home environment.
Resumo:
Fasciolosis is a food borne zoonosis, caused by the digenetic trematode Fasciola. Freshwater lymnaeid snails are the intermediate host of the trematodes. Chlorophyllin, a semi-synthetic derivative of chlorophyll and its formulations obtained from freeze dried cow urine (FCU) had their toxicity tested against redia and cercaria larvae of F. gigantica. The larvicidal activity of chlorophyllin and its formulations were found to depend on both, time and concentration used against the larvae. Toxicity of chlorophyllin + FCU (1:1 ratio) in sunlight against redia larva (8 h LC50: 0.03 mg/mL) was more pronounced than using just chlorophyllin (8 h LC50: 0.06 mg/mL). Toxicity of chlorophyllin + FCU in sunlight against redia (8 h LC50: 0.03 mg/mL) was higher than against cercaria (8 h LC50: 0.06 mg/mL). The larvicidal activity of chlorophyllin in sunlight (redia/cercaria larvae: 8 h LC50: 0.06 mg/mL) was more pronounced than under laboratory conditions (redia: 8 h LC50: 22.21 mg/mL/, cercaria 8 h LC50: 96.21 mg/mL). Toxicity of FCU against both larvae was lower than that of chlorophyllin and chlorophyllin + FCU. Chlorophyllin and its formulations + FCU were 357.4 to 1603.5 times more effective against redia/cercaria larvae in sunlight than under laboratory conditions. The present study has shown that chlorophyllin formulations may be used as potent larvicides against fasciolosis.