161 resultados para Processos de consenso
Resumo:
OBJETIVO: O objetivo deste estudo foi identificar processos inflamatórios na articulação temporomandibular empregando leucócitos autólogos marcados com tecnécio-99m hexametilpropilenoaminooxima (99mTc-HMPAO). MATERIAIS E MÉTODOS: Foi utilizado um modelo experimental de indução de artrite na articulação temporomandibular de dez coelhos machos da raça Nova Zelândia, por meio da injeção intra-articular de ovalbumina na articulação temporomandibular esquerda de cada animal. Para controle, na articulação contralateral foi injetada solução salina. Após a marcação dos leucócitos com 99mTc-HMPAO e injeção endovenosa deste complexo nos coelhos, imagens cintilográficas foram obtidas. RESULTADOS: Observou-se captação aumentada dos 99mTc-HMPAO-leucócitos na articulação temporomandibular esquerda quando comparada à direita. A análise estatística foi realizada utilizando-se o teste não-paramétrico de Wilcoxon. Houve diferença estatisticamente significativa dos valores das contagens por minuto de radioatividade, relativos à articulação inflamada quando comparados aos valores obtidos na articulação contralateral (p = 0,0073). CONCLUSÃO: O método empregando leucócitos autólogos marcados com 99mTc-HMPAO é capaz de identificar focos inflamatórios de forma precoce e precisa, o que poderá contribuir na conduta terapêutica dos pacientes, antes que alterações estruturais sejam instaladas.
Resumo:
Apresentamos uma lista de recomendações sobre a utilização de 18F-FDG PET em oncologia, no diagnóstico, estadiamento e detecção de recorrência ou progressão do câncer. Foi realizada pesquisa para identificar estudos controlados e revisões sistemáticas de literatura composta por estudos retrospectivos e prospectivos. As consequências e o impacto da 18F-FDG PET no manejo de pacientes oncológicos também foram avaliados. A 18F-FDG PET deve ser utilizada como ferramenta adicional aos métodos de imagem convencionais como tomografia computadorizada e ressonância magnética. Resultados positivos que sugiram alteração no manejo clínico devem ser confirmados por exame histopatológico. A 18F-FDG PET deve ser utilizada no manejo clínico apropriado para o diagnóstico de cânceres do sistema respiratório, cabeça e pescoço, sistema digestivo, mama, melanoma, órgão genitais, tireoide, sistema nervoso central, linfoma e tumor primário oculto.
Resumo:
The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.
Resumo:
In this work, a numerical modeling analysis of the gas-phase decomposition of SF6 / O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes and the effect of the parameters' uncertainties were determined. The model was compared with experimental data for the plasma etching of silicon and with the calculated results for the CF4 / O2 system. In both systems the main etching agent is the fluorine atom and the concentration of the major species depends on the composition of the mixture. The etching rate is greater for SF6 / O2.
Resumo:
The concepts of dissipation and feedback are contained in the behavior of many natural dynamical systems. They have been used to predict the evolution of populations leading to the formulation of the quadratic logistic equation (QLE). More recently, the QLE has been used to provide a better understanding of physicochemical systems with promising results. Many physical, chemical and biological dynamic phenomena can be understood on the basis of the QLE and this work describes the main aspects of this equation and some recent applications, with emphasis on electrochemical systems. Also, it is illustrated the concept of potential energy as a convenient way of describing the stability of the fixed points of the QLE.
Resumo:
The implementation of a quality assurance program in chemical analytical laboratories, that can aid in demonstrate the quality of their results, is an issue of great concern. As a consequence, it is mandatory to give an estimate of the confidence that can be placed on the obtained results. An useful measure of this confidence is the measurement uncertainty and, nowadays, a result without the corresponding uncertainty statement cannot be considered reliable. This paper presents a summary of the most important mechanisms for the evaluation and reporting of the measurement uncertainty. In implementing these principles, it is described the measurement uncertainty estimation associated with the preparation of a uranium elemental reference solution at 2.4 mg.kg-1 from the corresponding certified reference material (in this example at 1003 mg.kg-1).
Resumo:
Silica gel is widely used as adsorbent for isolating and purifying natural compounds. Intensive use and high cost make this process expensive and generate solid residues contaminated with many different organic compounds. In the present work a simple method for recycling silica was investigated, by using Advanced Oxidative Processes. Silica gel was treated with H2O2/solar light and compared with a sample treated by conventional methods (high temperature and oxidation with KMnO4). High temperature treatment changes the structure of the silica and, consequently, the separation efficiency. Oxidation by using KMnO4 requires multiple steps and produces residues, including manganese and oxalic acid. The method using H2O2/solar light to recuperate silica gel does not modify its separation efficiency and is less expensive than the traditional methods. Additionally, HPLC and GC-MS analysis indicate that H2O2/solar light eliminates all residues of the silica gel.
Resumo:
After decades of polluting actions the environment manifests serious and global consequences. The contamination of soils and groundwater by organic compounds is a widespread problem mainly on account of contamination by leakage from underground storage tanks, which often results in the release of gasoline or other chemicals. The main problem about groundwater contamination is due to the toxicity of water-soluble components such as benzene, toluene and xylene (BTX). In the present work a study about classical and modern methods for remediation of BTX is reported.
Resumo:
The aim of this work is to present the principal properties and applications of supporting electrolytes (SE) to students, teachers and researchers interested in electrode processes. Different aspects are discussed including the importance of SE in maintaining constant the activity coefficients and the diffusion coefficients and reducing the transport number of electroactive species. Its effect on the electrochemical kinetic parameters is also presented.
Resumo:
A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely effluents from paper mills, and textile, whey (dairy industry), pharmaceutic sand pesticides plants.
Resumo:
In this study the efficiency of advanced oxidative processes (AOPs) were investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX). The results indicated that BTX can be effectively oxidized by the UV-A-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolyc intermediates at reaction times of about 30 min. Preliminary investigations using solar light suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species.
Resumo:
Sialic acids are nine-carbon carbohydrates that occur widely in nature and occupy the terminal portions of some glycoproteins and glycolipids of cell membranes. These carbohydrates are closely involved in cell-cell interactions and in processes such as microbial infection, inflammation, etc. Studies on the participation of sialic acids in biological processes have provided comprehension about their role in the infection by the influenza virus, the causal agent of flu. In this article, we present an overview of the importance of sialic acids in the influenza virus infection and how the knowledge of their involvement in this process has allowed the development of selective and efficient drugs against the virus.
Resumo:
This work starts with a historical perspective of the social and scientific progress related to the understanding of the atmospheric aerosol. Its origin, physical, chemical and optical characteristics, as well as its environmental behaviour are described, retracing the evolution of the concepts related to this subject over the last centuries. The main sources that contribute to atmospheric particulate matter and the modern understanding of its formation processes and constitution, focusing on the chemical pathways leading to it and on its organic components are presented. This discussion is complemented with recent evaluations of the quantities emitted by primary, secondary, biogenic and anthropogenic sources and the effects due to accumulation or dispersion of aerosols, justifying the chemical and environmental interest they engender.