78 resultados para PRECURSORS
Resumo:
Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of β-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. The β-ionone was the main compound produced by CS1 (34.0 mg.L-1) and CF9 (42.4 mg.L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The β-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
Abstract The reactions leading to the formation of precursors of chocolate flavor are performed by endogenous enzymes present in the cocoa seed. Polyphenol oxidase (PPO) presence and activity during fermentation of cocoa beans is responsible for the development of flavor precursors and is also implicated in the reduction of bitterness and astringency. However, the reliability of cocoa enzyme activities is complicated due to variations in different genotypes, geographical origins and methods of fermentation. In addition, there is still a lack of systematic studies comparing different cocoa cultivars. So, the present study was designed to characterize the activity of PPO in the pulp and seeds of two cocoa cultivars, PH 16 and TSH 1188. The PPO activity was determined spectrophotometrically and characterized as the optimal substrate concentration, pH and temperature and the results were correlated with the conditions during the fermentation process. The results showed the specificity and differences between the two cocoa cultivars and between the pulp and seeds of each cultivar. It is suggested that specific criteria must be adopted for each cultivar, based on the optimal PPO parameters, to prolong the period of maximum PPO activity during fermentation, contributing to the improvement of the quality of cocoa beans.