400 resultados para PLASMODIUM-FALCIPARUM MALARIA
Resumo:
A survey on Plasmodium infection was carried out in gold mine camps located in the Brazilian Amazon. Antibody against P. falciparum ring-infected erythrocyte surface antigen (RESA) was quantified by an enzyme-immunoassay in order to assess P. falciparum exposure. Hepatitis B, a common infection in this area, was also investigated by serologic markers. Among 520 sampled subjects, 517 (99.4%) admitted previous symptomatic malaria, 106 (20.4%) had positive thick smears for malaria, 82.9% had HBV markers, and 7.1% were HBsAg positive. Anti-RESA titers was significantly lower in HBV carriers than in people with resolved HBV infection suggesting that the anti-RESA immune response could be supressed by HBV carrier status. Moreover, immunedeficient responses to both infections may take place in some subjects causing concomitant lower anti-RESA response and incapacity to clear HBV.
Resumo:
Phenothiazine drugs - fluphenazine, chlorpromazine, methotrimeprazine and trifluoperazine - were evaluated as modulating agents against Brazilian chloroquine-resistant fresh isolates of Plasmodium falciparum. Aiming to simulate therapeutic schedules, chloroquine was employed at the concentration used for sensitive falciparum malaria treatment and anti-psychotic therapeutic concentrations of the phenothiazine drugs were adopted in two-fold serial dilutions. The in vitro microtechnique for drug susceptibility was employed. Unlike earlier reported data, the phenothiazine modulating effect was not observed. However, all the drugs demonstrated intrinsic antiplasmodial activity in concentrations lower than those described in the literature. In addition, IC50 estimates have been shown to be inferior to the usual anti-psychotic therapeutic concentrations. Statistical analysis also suggested an increase in the parasitaemia rate or, even, a predominant antiparasitic effect of phenothiazine over chloroquine when used in combination.
Resumo:
Severe anemia is the earliest and a frequently fatal complication of Plasmodium falciparum infection. Here we describe Aotus infulatus as a primate model suitable to study this malaria complication. Both non-splenectomized and splenectomized monkeys receiving different inocula of P. falciparum FVO strain presented large (> 50%) decreases in hematocrit values during infection. Non-splenectomized animals were able to control parasite growth (parasitemia did not exceed 4%), but they had to be treated because of severe anemia. Three of 4 splenectomized monkeys did not control parasitemia and were treated, but developed severe anemia after treatment when presenting a negative blood film. Destruction of parasitized red blood cells alone cannot account for the degree of anemia. Non-splenectomized monkeys repeatedly infected with homologous parasites became rapidly and progressively resistant to reinfection and to the development of severe anemia. The data presented here point to A. infulatus as a suitable model for studying the pathogenesis of severe malarial infection.
Resumo:
A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay) was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7) parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.
Resumo:
In this work we investigated the frequency of polymorphism in exon II of the gene encoding most of the amino-terminal region of the serine rich antigen (SERA) in Plasmodium falciparum field samples. The blood samples were colleted from P. falciparum infected individuals in three areas of the Brazilian Amazon. Two fragments have been characterized by polymerase chain reaction: one of 175 bp corresponding to the repeat region with 5 octamer units and one other of 199 bp related to the 6 repeat octamer units of SERA protein. The 199 bp fragment was the predominant one in all the studied areas. The higher frequency of this fragment has not been described before and could be explained by an immunological selection of the plasmodial population in the infected individuals under study. Since repeat motifs in the amino-terminal region of SERA contain epitopes recognized by parasite-inhibitor antibodies, data reported here suggest that the analysis of the polymorphism of P. falciparum isolates in different geographical areas is a preliminary stage before the final drawing of an universal vaccine against malaria can be reached.
Resumo:
In Western Amazon areas with perennial malaria transmission, long term residents frequently develop partial immunity to malarial infection caused either by Plasmodium falciparum or P. vivax, resulting in a considerable number of non-symptomatically infected individuals. For yet unknown reasons, these individuals sporadically develop symptomatic malaria. In order to identify if determined parasite genotypes, defined by a combination of eleven microsatellite markers, were associated to different outcomes - symptomatic or asymptomatic malaria - we analyzed infecting P. falciparum parasites in a suburban riverine population. Despite of detecting a high degree of diversity in the analyzed samples, several microsatellite marker alleles appeared accumulated in parasites from non-symptomatic infections. This result may be interpreted that a number of microsatellites, which are not directly related to antigenic features, could be associated to the outcome of malarial infection. The result may also point to a low frequency of recombinatorial events which otherwise would dissociate genes under strong immune pressure from the relatively neutral microsatellite loci.
Resumo:
To infer recent patterns of malaria transmission, we measured naturally acquired IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein (MSP)-1 of both Plasmodium vivax (PvMSP-1(19)) and Plasmodium falciparum (PfMSP-1(19)) in remote malaria-exposed populations of the Amazon Basin. Community-based cross-sectional surveys were carried out between 2002 and 2003 in subjects of all age groups living along the margins of the Unini and Jaú rivers, Northwestern Brazil. We found high prevalence rates of IgG antibodies to PvMSP-1(19) (64.0 - 69.6%) and PfMSP-1(19) (51.6 - 52.0%), with significant differences in the proportion of subjects with antibodies to PvMSP-1(19) according to age, place of residence and habitual involvement in high-risk activities, defining some groups of highly exposed people who might be preferential targets of malaria control measures. In contrast, no risk factor other than age was significantly associated with seropositivity to PfMSP-1(19). Only 14.1% and 19.3% of the subjects tested for antibodies to PvMSP-1(19) and PfMSP-1(19) in consecutive surveys (142 - 203 days apart) seroconverted or had a three fold or higher increase in the levels of antibodies to these antigens. We discuss the extent to which serological data correlated with the classical malariometric indices and morbidity indicators measured in the studied population at the time of the seroprevalence surveys and highlight some limitations of serological data for epidemiological inference.
Resumo:
French Guiana is one of the areas in South America most affected by malaria and where the disease has become a serious public health problem. In spite of this situation, little recent entomological data are available from the main localities where the disease occurs, even though they are crucial for development of an effective vector control strategy. A longitudinal entomological survey was carried out from March 2000-February 2002 in three Amerindian villages, namely Twenké, Taluène and Cayodé, located in the Amazonian forest of the Upper-Maroni area, to assess anopheline mosquitoes and malaria transmission dynamics. Anopheles darlingi (Diptera: Culicidae) was the most abundant mosquito species caught during the study. This efficient American malaria vector was active the entire year, but showed an evident peak of abundance during the main rainfall season, from April-June, with an average human biting rate of 255.5 bites per person per night. Parity rates were homogeneous all year, indicating no significant seasonal variability in female survival rates. Estimated vectorial capacity indices were higher during the rainy season, even though the risk of transmission was present throughout the year (VCI > 1). A total of 14 An. darlingi were found infected with Plasmodium falciparum, Plasmodium vivax or Plasmodium malariae. The annual circumsporozoite indices were 0.15, 0.14 and 0.05, and the entomological inoculation rates were 22.8, 27.4 and 14.4 infected bites per person per year in Twenké, Taluène and Cayodé, respectively. An. darlingiwas endo-exophagic and rather exophilic in these localities. The species was collected throughout the night but was more aggressive between 21:30-03:30 h and after 05:30 h. Parity rates were homogeneous during the entire night. Impregnated hammock and/or bed nets, coupled with the use of mosquito repellents, as well as the early treatment of malarial cases, appear to be the most suitable tools for fighting malaria in these Amerindian villages since the spraying of residual insecticides is inefficient because of vector biology and the housing structure.
Resumo:
Characteristics of primary and recrudescent Plasmodium falciparum infections were evaluated in 25 children who did not recover after amodiaquine (AQ) treatment. Recrudescence was detected by a thick blood smear and confirmed by polymerase chain reaction. Over half of recrudescent events occurred after 14 days of initiation of treatment and were associated with relatively low asexual parasitaemia. We examined the gametocyte sex ratio (GSR) in these children and in age and gender-matched controls that had AQ-sensitive (AQ-S) infections (n = 50). In both AQ-S and AQ-resistant (AQ-R) infections, the GSR was female-biased pre-treatment and became male-biased by the third day after treatment initiation. However, gametocyte males persisted after this period in children with AQ-R infections. AQ-recrudescent infections are relatively low (25 of 612.4%) in children from this endemic area.
Resumo:
Steroids from Solanum nudum (SNs) have demonstrated antiplasmodial activity against erythrocytic stages of the Plasmodium falciparum strain FCB-2. It is well known that steroids can alter the membrane function of erythrocytes. Thus, we assessed alterations in the membranes of uninfected red blood cells, the parasite invasiveness and the solute-induced lysis of parasitised red blood cells (pRBCs). induced by SNs. We found that most merozoites were unable to invade SN-treated erythrocytes. However, transmission electron microscopy revealed no effect on the morphology of uninfected erythrocytes treated with either SN2 or diosgenone and neither SN induced haemolysis of uninfected erythrocytes. SN2 and SN4 inhibited isosmotic sorbitol and alanine-induced haemolysis of pRBCs. In contrast, diosgenone and SN1 did not inhibit solute-induced haemolysis. The inhibition of solute-induced lysis of parasitised erythrocytes by SN2 and SN4 suggest an action of these SNs on new permeability pathways of pRBCs.
Resumo:
Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.
Resumo:
The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution.
Resumo:
Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai) and F (Udon Thani) as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo) and F (Ayuttaya), as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai) were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.
Resumo:
Anaemia in falciparum malaria is associated with an increased risk of gametocyte carriage, but its effects on transmission have not been extensively evaluated in malarious children. Plasmodium falciparum gametocyte carriage, emergence, clearance, population sex ratios (SR) (defined as the proportion of gametocytes that are male), inbreeding rates and temporal changes in SR were evaluated in 840 malarious children. Gametocyte carriage pre-treatment was at a level of 8.1%. Anaemia at enrolment was an independent risk factor for gametocyte carriage post-treatment. The emergence of gametocytes seven days post-treatment was significantly more frequent in anaemic children (7/106 vs. 10/696, p = 0.002). In the initially detected gametocytes, the proportion of children with a male-biased SR (MBSR) (> 0.5) was significantly higher in anaemic children (6/7 vs. 3/10, p = 0.027). Pre-treatment SR and estimated inbreeding rates (proportion of a mother's daughters fertilised by her sons) were similar in anaemic and non-anaemic children. Pre-treatment SR became more female-biased in non-anaemic children following treatment. However, in anaemic children, SR became male-biased. Anaemia was shown to significantly increase gametocyte emergence and may significantly alter the SR of emerging gametocytes. If MBSR is more infective to mosquitoes at low gametocytaemia, then these findings may have significant implications for malaria control efforts in endemic settings where malaria-associated anaemia is common.
Resumo:
The effects of artemisinin-based combination therapies (ACTs) on transmission of Plasmodium falciparum were evaluated after a policy change instituting the use of ACTs in an endemic area. P. falciparum gametocyte carriage, sex ratios and inbreeding rates were examined in 2,585 children at presentation with acute falciparum malaria during a 10-year period from 2001-2010. Asexual parasite rates were also evaluated from 2003-2010 in 10,615 children before and after the policy change. Gametocyte carriage declined significantly from 12.4% in 2001 to 3.6% in 2010 (@@χ² for trend = 44.3, p < 0.0001), but sex ratios and inbreeding rates remained unchanged. Additionally, overall parasite rates remained unchanged before and after the policy change (47.2% vs. 45.4%), but these rates declined significantly from 2003-2010 (@@χ² for trend 35.4, p < 0.0001). Chloroquine (CQ) and artemether-lumefantrine (AL) were used as prototype drugs before and after the policy change, respectively. AL significantly shortened the duration of male gametocyte carriage in individual patients after treatment began compared with CQ (log rank statistic = 7.92, p = 0.005). ACTs reduced the rate of gametocyte carriage in children with acute falciparum infections at presentation and shortened the duration of male gametocyte carriage after treatment. However, parasite population sex ratios, inbreeding rates and overall parasite rate were unaffected.