77 resultados para Nematocyst Venom
Resumo:
Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.
Resumo:
Ampelozizyphus amazonicus Ducke is a tree commonly found in the Amazon region and an extract of its stem bark is popularly used as an antimalarial and anti-inflammatory agent and as an antidote to snake venom. Ursolic acid; five lupane type triterpenes: betulin, betulinic acid, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid, and three phytosteroids: stigmasterol, sitosterol and campesterol, have been isolated from stem extracts of A. amazonicus Ducke. Their structures were characterized by spectral data including COSY and HMQC. In an in vitro biological screening of the isolated compounds, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid was cytotoxic against the SKBR-3 human adenocarcinoma cell line (1 to 10 mg/mL), while 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid exhibited cytotoxicity against both SKBR-3 human adenocarcinoma and C-8161 human melanoma tumor cell lines (>0.1 mg/mL). In the present study, different extracts and some fractions of this plant were also investigated for trypanocidal activity due to the presence of pentacyclic triterpenes. The triterpene classes are potent against Trypanosoma cruzi. The bioassays were carried out using blood collected from Swiss albino mice by cardiac puncture during the parasitemic peak (7th day) after infection with the Y strain of T. cruzi. The results obtained showed that A. amazonicus is a potential source of bioactive compounds since its extracts and fractions isolated from it exhibited in vitro parasite lysis against trypomastigote forms of T. cruzi at concentrations >100 µg/mL. Fractions containing mainly betulin, lupenone, 3ß-hydroxylup-20(29)-ene-27,28-dioic acid, and 2a,3ß-dihydroxylup-20(29)-ene-27,28-dioic acid showed more activity than crude extracts.