191 resultados para Natural infection
Resumo:
Investigation was undertaken on the behaviour of the phlebotomine fauna in caves, forests, and anthropic environments of the Serra da Bodoquena, between January 1998 and January 2000. This paper reports on the phlebotomines captured in forested areas with automatic light traps (ALT), Shannon traps (ST), aspiration (AN), at natural resting sites and by human attractiveness (HA) during 24 h. The diversity and abundance of the species were investigated with ALT installed at 16 points (ground level) and 6 in the canopy. Natural infection by flagellates was investigated in females captured with ST, AN, and HA. The sand fly fauna was represented by 23 species. Twenty-two of these were captured with ALT, 15 of them on the western side, and 20 on the eastern. Lutzomyia longipalpis and Nyssomyia whitmani were the most abundant on the former and this species together with Lutzomyia almerioi on the latter side. On the eastern side the ecotopes located close to caves rendered a significantly greater number (P < 0.01) of specimens than did more distant sites. On this side Lu. almerioi contributed with 56% of the total number of specimens. Lu. almerioi females were predominantly attracted by humans (96.4%) and by ST (93.2%) and three of the 2173 dissected (0.138%) presented natural infection by flagellates. The attraction of Lu. almerioi to humans occurred during all seasons, predominantly in the summer, and in nocturnal and diurnal periods. Thus it is bothersome to inhabitants of and visitors to the Bodoquena ridge and a potential vector of flagellates.
Resumo:
Taxonomic markers (head structure morphometry, isoenzymes and randon amplified polymorphism of DNA - RAPD) were used to understand the population dynamics of Triatoma vitticeps, predominant triatomine species in Itanhomi district, using samples obtained from domestic, peridomiciliary and sylvatic habitats. Morphometric analysis revealed sexual dimorphism within the three samples although specimens could not be separated according to the habitat in which they were captured. Forty-two bands were analyzed from RAPD profiles generated using four primers. A dendrogram constructed from Dice's similarity coefficient values showed that migration of the insects between the habitats has occurred, without structuring of populations. Moreover, the dendrogram obtained from the genetic distance values showed an important gene flow between the sylvatic and domestic habitats. No polymorphism was found in the electrophoretic mobility of proteins for the ten enzymes studied. Our results revealed movement of triatomines between the three habitats, suggesting that the presence of T. vitticeps in houses should not be ignored. As invasion of houses by sylvatic insects is frequent and the natural infection indices of this species are among the highest known, epidemiological vigilance studies may reveal possible changes in T. vitticeps behaviour which could present future risks to public health.
Resumo:
Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.
Resumo:
The present study aimed to analyse the dwelling infestation rates and the distribution and natural Trypanosoma cruzi infection rates, among triatomines captured in the 13 municipalities of the state of Ceará. The records relating to the capture of intradomicile and peridomicile triatomines during the Chagas disease control program of 1998-2008 were available. Among the triatomines captured and in all of the municipalities studied, Triatoma brasiliensis presented the highest incidence in intradomicile and Triatoma pseudomaculata in peridomicile and some were positive for infection by T. cruzi. We emphasise that it is important to have sustainable epidemiological surveillance in the region, since when the control measures decreased, the incidence of T. pseudomaculata in intradomicile grew.
Resumo:
Over the last 20 years, there has been an increase in the number of leishmaniasis cases in Brazil. Belo Horizonte (BH) is one of the most highly populated Brazilian cities that is affected by visceral leishmaniasis (VL). The health services in BH are coordinated by a central nucleus that is subdivided into nine sanitary districts. Historically, the highest level of human VL cases was found in the northeast sanitary district (NSD). The objective of our study was to detect Leishmania infection in the phlebotomine sand flies collected in the NSD by dissection and molecular approaches. Following the occurrence of human VL cases in 2005, entomological captures were performed from July 2006-June 2007. Out of the 245 sand flies dissected, only three Lutzomyia longipalpis spp contained flagellates. The female sand flies were grouped into 120 pools according to date, collection site and species, with approximately 10 individual sand flies in each pool. Subsquently, the DNA was extracted and Leishmania spp and other parasites were detected and identified by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorfism. Leishmania infantum was present in at least 19% of the Lu. longipalpis collected, in 3.8% of the Nyssomiya whitmani collected, in 33.3% of the Evandromiya termitophila collected and in 14.3% of the Nyssomiya intermedia collected. When the females of the cortelezzii complex were compared with each other, 3.2% of the females were infected with Leishmania braziliensis, whereas 3.2% of the females were infected with trypanosomatids.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.
Resumo:
Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.
Resumo:
Rhodnius prolixus, a blood-sucking triatomine with domiciliary anthropophilic habits, is the main vector of Chagas disease. The current paradigm of Trypanosoma cruzi transmission in Columbia includes a sylvatic and domiciliary cycle co-existing with domestic and sylvatic populations of reservoirs. The aim of this study is to evaluate the population densities and relative abundance of triatomines and mammals that may be involved in the sylvatic cycle of Chagas disease to clarify the epidemiological scenario in an endemic area in the province of Casanare. Insect vectors on Attalea butyracea palms were captured using both manual searches and bait traps. The capture of mammals was performed using Sherman and Tomahawk traps. We report an infestation index of 88.5% in 148 palms and an index of T. cruzi natural infection of 60.2% in 269 dissected insects and 11.9% in 160 captured mammals. High population densities of triatomines were observed in the sylvatic environment and there was a high relative abundance of reservoirs in the area, suggesting a stable enzootic cycle. We found no evidence of insect domiciliation. Taken together, these observations suggest that eco-epidemiological factors shape the transmission dynamics of T. cruzi, creating diverse scenarios of disease transmission.
Resumo:
Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmaniain wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruziwere dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite.
Resumo:
The main objective of this work was to identify sources of resistance in sorghum (Sorghum bicolor) to Peronosclerospora sorghi, the causal agent of downy mildew, through the evaluation of 42 sorghum genotypes under natural infection in the field. Genotypes were planted in single row plots between two rows of the susceptible line SC283, planted 30 days before, to act as spreader rows, in two separate nurseries. The experimental design was a completely randomized block design with three replications. Sorghum genotypes CMSXS156, CMSXS157, CMSXS243, TxARG-1, 8902, 9902054, 9910032, 9910296, Tx430, QL-3, SC170-6-17, CMSXS762 and BR304 were classified as highly resistant in both nurseries. Among these, SC170-6-17 and 9910296 showed 0% systemic infection. Results indicated the possible occurrence of different pathotypes of P. sorghi in the two nurseries.
Resumo:
The importance of the presence of symptomatic fruits with citrus black symptoms (CBS) on the disease severity level in subsequent crop production was assessed in an orchard planted with Valência and Natal sweet orange varieties. Additionally, the period of susceptibility of the fruits of these varieties was evaluated. Fruits were covered with paper bags at the stage of 75% fallen petals and were then exposed to natural infection at weekly intervals, from October 2000 to April 2001. This process was carried out in plants where the fruits from the previous harvest had been picked as well as in plants where fruits remained until natural drop. The evaluation of disease severity used a scale that varied from 0 (absence of symptoms) to 6 (severe symptoms). It was observed that, for the Valência and Natal varieties, conidia of Phyllosticta citricarpa that had formed on the lesions of fruits from the previous harvest did not significantly increase the severity of disease on the fruits of the subsequent harvest period. In this study, the protection of the fruits until 10 weeks after petal drop did not affect the number of lesions, indicating that ascospore discharges after that date were, probably, responsible for disease severity. Fruits exposed between the 20th and 24th week after 75% of the petals had fallen were symptomatic, indicating that, at this stage, the fruits were still susceptible to the pathogen.
Resumo:
Data available in the literature were used to develop a warning system for bean angular leaf spot and anthracnose, caused by Phaeoisariopsis griseola and Colletotrichum lindemuthianum, respectively. The model is based on favorable environmental conditions for the infectious process such as continuous leaf wetness duration and mean air temperature during this subphase of the pathogen-host relationship cycle. Equations published by DALLA PRIA (1977) showing the interactions of those two factors on the disease severity were used. Excell spreadsheet was used to calculate the leaf wetness period needed to cause different infection probabilities at different temperature ranges. These data were employed to elaborate critical period tables used to program a computerized electronic device that records leaf wetness duration and mean temperature and automatically shows the daily disease severity value (DDSV) for each disease. The model should be validated in field experiments under natural infection for which the daily disease severity sum (DDSS) should be identified as a criterion to indicate the beginning and the interval of fungicide applications to control both diseases.
Resumo:
In field experiments, the density of Macrophomina phaseolina microsclerotia in root tissues of naturally colonized soybean cultivars was quantified. The density of free sclerotia on the soil was determined for plots of crop rotation (soybean-corn) and soybean monoculture soon after soybean harvest. M. phaseolina natural infection was also determined for the roots of weeds grown in the experimental area. To verify the ability of M. phaseolina to colonize dead substrates, senesced stem segments from the main plant species representing the agricultural system of southern Brazil were exposed on naturally infested soil for 30 and 60 days. To quantify the sclerotia, the methodology of Cloud and Rupe (1991) and Mengistu et al. (2007) was employed. Sclerotium density, assessed based on colony forming units (CFU), ranged from 156 to 1,108/g root tissue. Sclerotium longevity, also assessed according to CFU, was 157 days for the rotation and 163 days for the monoculture system. M. phaseolina did not colonize saprophytically any dead stem segment of Avena strigosa,Avena sativa,Hordeum vulgare,Brassica napus,Gossypium hirsutum,Secale cereale,Helianthus annus,Triticosecalerimpaui, and Triticum aestivum. Mp was isolated from infected root tissues of Amaranthus viridis,Bidens pilosa,Cardiospermum halicacabum,Euphorbia heterophylla,Ipomoea sp., and Richardia brasiliensis. The survival mechanisms of M. phaseolina studied in this paper met the microsclerotium longevity in soybean root tissues, free on the soil, as well as asymptomatic colonization of weeds.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.