107 resultados para NUCLEAR-COMPLEX
Resumo:
An epidemiological study was carried out in the northern Mexican state, Nayarit. Fourteen patients with possible cutaneous leishmaniasis skin lesions gave positive Montenegro skin tests. Biopsies were taken from the skin ulcer and analyzed by polymerase chain reaction (PCR) with specific primers for the Leishmania mexicana complex; however all biopsies were not amplified. PCR carried out with specific primers for the L. braziliensis complex resulted in the amplification of all patient DNA. DNA from 12 out of 14 biopsies gave positive amplification with primers species specific for L. (Viannia) braziliensis and hybridized with a species specific L. (V.) braziliensis probe. These results demonstrate the presence in Nayarit of at least two members of the L. braziliensis complex. Most of the cutaneous lesions were caused by L. (V.) braziliensis and two by another species belonging to the L. braziliensis complex. As far as we are aware, this is the first report of L. (V.) braziliensis in Nayarit. The main risk factor associated with the contraction of this disease in Nayarit is attributed to working on coffee plantations.
Resumo:
Migration and colonization of the oesophagus by Leishmania mexicana parasites were enhanced after digestion of a second bloodmeal intake in Lutzomyia evansi. This event has epidemiological significance since it affects the infection susceptibility of this sand fly species, which is a proven vector of L. chagasi in Colombian and Venezuelan visceral leishmaniasis foci. Also, it may explain the host seeking behaviour displayed by some partially bloodfed flies found inside houses.
Resumo:
Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) technique, using the primers (CA)8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.
Resumo:
Toro Toro (T) and Yungas (Y) have been described as genetically well differentiated populations of the Lutzomyia longipalpis (Lutz & Neiva, 1912) complex in Bolivia. Here we use geometric morphometrics to compare samples from these populations and new populations (Bolivia and Nicaragua), representing distant geographical origins, qualitative morphological variation ("one-spot" or "two-spots" phenotypes), ecologically distinct traits (peridomestic and silvatic populations), and possibly different epidemiological roles (transmitting or nor transmitting Leishmania chagasi). The Nicaragua (N) (Somotillo) sample was "one-spot" phenotype and a possible peridomestic vector. The Bolivian sample of the Y was also "one-spot" phenotype and a demonstrated peridomestic vector of visceral leishmaniasis (VL). The three remaining samples were silvatic, "two-spots" phenotypes. Two of them (Uyuni and T) were collected in the highlands of Bolivian where VL never has been reported. The last one (Robore, R) came from the lowlands of Bolivia, where human cases of VL are sporadically reported. The decomposition of metric variation into size and shape by geometric morphometric techniques suggests the existence of two groups (N/Y/R, and U/T). Several arguments indicate that such subdivision of Lu. longipalpis could correspond to different evolutionary units.
Resumo:
The nuclear phenotypes of Malpighian tubule cells in fifth instar nymphs of Triatoma infestans, one of the most important vectors of Chagas disease, were studied following sequential shocks at 0ºC, separated by intervals of 8 h and 24 h at 30ºC, under conditions of moderate fasting and full nourishment. The insects pertained to colonies reared in the laboratory and originated from domestic specimens collected in the Brazilian states of São Paulo (north) and Minas Gerais (south). Since nuclear phenotypes in this species are affected by single cold shocks, it was expected that these phenotypes could also be changed by sequential shocks. Nuclear phenotypes indicative of mechanisms of cell survival (nuclear fusion and heterochromatin decondensation) and cell death (apoptosis and necrosis) were observed concomitantly in all the conditions tested. Nuclear fusion and heterochromatin decondensation were not found relevant for the presumed acquisition of the cold-hardening response in T. infestans. The decreased frequency of apoptosis and necrosis following sequential cold shocks including under fasting conditions, indicated that tolerance to sequential cold shocks occurred in T. infestans of the mentioned origin.
Resumo:
Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h) or cold (5 or 0°C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.
Resumo:
Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.
Resumo:
The lengths of the male genital filaments and female spermathecal ducts were measured in phlebotomine sand flies of the Lutzomyia intermedia species complex and the ratios between these characters calculated. Ratios for L. intermedia s. s. from Northeast vs Southeast Brazil (Espírito Santo and Minas Gerais), Espírito Santo/Minas Gerais vs Rio de Janeiro/São Paulo and L. intermedia vs L. neivai were significantly different at P < 0.1, 0.05 and 0.01 respectively when compared using ANOVA. The spermathecal ducts and genital filaments of L. intermedia were significantly longer than those of L. neivai (P < 0.01) and could be used to differentiate these species. The taxonomic and biological significance of these differences is discussed.
Resumo:
In Mexico, Triatoma longipennis (Usinger), Triatoma picturata (Usinger), and Triatoma pallidipennis (Stal), primary Chagas disease vector species of the phyllosoma complex, were analyzed by randomly amplified polymorphic DNA (RAPD). Sixteen decametric primers resolved individual profiles not identical, but partially discriminative between species. Analysis based on pairwise presence/absence comparisons between the three species was performed using three primers and two outgroup species Triatoma infestans (Klug) and Triatoma barberi (Usinger). Fifty-three bands in total were scored, although only two bands were constant among the three phyllosoma complex species. Two other bands were constant only for T. longipennis and T. picturata together, and not present in T. pallidipennis. Neighbor Joining tree and the multiple correspondence analysis discriminated T. pallidipennis clearly from the other two species, although there was overlap between T. longipennis and T. picturata. The results indicate a close relationship between the studied species and support the hypothesis of their recent evolution. The suitability of RAPD to discern populations within the species is discussed.
Resumo:
The first and second internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA of Biomphalaria tenagophila complex (B. tenagophila, B. occidentalis, and B. t. guaibensis) were sequenced and compared. The alignment lengths of these regions were about 655 bp and 481 bp, respectively. Phylogenetic relationships among the Biomphalaria species were inferred by Maximum Parsimony and Neighbor-joining methods. The phylogenetic trees produced, in most of the cases, were in accordance with morphological systematics and other molecular data previously obtained by polymerase chain reaction and restriction fragment length polymorphism analysis. The present results provide support for the proposal that B. tenagophila represents a complex comprising B. tenagophila, B. occidentalis and B. t. guaibensis.
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Resumo:
Anopheles (Nyssorhynchus) marajoara is a proven primary vector of malaria parasites in Northeast Brazil, and An. deaneorum is a suspected vector in Western Brazil. Both are members of the morphologically similar Albitarsis Complex, which also includes An. albitarsis and an undescribed species, An. albitarsis "B". These four species were recognized and can be identified using random amplified polymorphic DNA (RAPD) markers, but various other methodologies also point to multiple species under the name An. albitarsis. We describe here a technique for identification of these species employing polymerase chain reaction (PCR) primers based on ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) sequence. Since this method is based on known sequence it is simpler than the sometimes problematical RAPD-PCR. Primers were tested on samples previously identified using RAPD markers with complete correlation.
Resumo:
In order to evaluate the taeniosis-cysticercosis complex in a population of a peasants' settlement, located at Teodoro Sampaio, state of São Paulo, Brazil (longitude 52° 36'12 ", latitude 22° 17'12 ") a series of laboratory markers were determined. After signing an informed consent, participants answered a standardized questionnaire. To determine anti-Taenia solium cysticercus antibodies, the samples were tested by enzyme linked immunoabsorbent assay using 18-and 14-kDa antigen proteins from vesicular fluid of Taenia crassiceps (VF-Tcra). The reactive and inconclusive ELISA samples were tested by immunoblotting. Total IgE levels were determined by chemmiluminescence's assay and hemogram by flow cytometer flux counter. A total of 84 individuals, 5.9% presented anti-T. solium cysticercus antibodies in ELISA and 3.6% were strongly reactive in the 18/14 kDa immunoblotting confirmatory test. All of the individuals with positive antibodies showed elevated Total IgE levels. We conclude that the frequency of anti-T. solium cysticercus antibodies in this population is higher than other regions considered endemic in São Paulo. Thus, it is important to carry out surveys in Peasants' settlement areas with the objective of establishing public health measures for prevention and control of infectious diseases such as taeniosis-cysticercosis.
Resumo:
Malaria transmission in the Southern Colombian state of Putumayo continues despite the absence of traditional vector species, except for the presence of Anopheles darlingi near the southeastern border with the state of Amazonas. In order to facilitate malaria vector incrimination in Putumayo, 2445 morphologically identified Anopheles females were tested for natural infection of Plasmodium vivax by ELISA. Specimens tested included An. apicimacula (n = 2), An. benarrochi B (n = 1617), An. darlingi (n = 29), An. mattogrossensis (n = 7), An. neomaculipalpus (n = 7), An. oswaldoi (n = 362), An. peryassui (n = 1), An. punctimacula (n = 1), An. rangeli (n = 413), and An. triannulatus (n = 6). Despite being overwhelmingly the most anthropophilic species in the region and comprising 66.1% of the mosquitoes tested, An. benarrochi B was not shown to be a vector. Thirty-five An. rangeli and one An. oswaldoi were naturally infected with P. vivax VK210. Sequence data were generated for the nuclear second internal transcriber space region of 31 of these 36 vivax positive mosquitoes (86.1%) to confirm their morphological identification. An. oswaldoi is known to be a species complex in Latin America, but its internal taxonomy remains unresolved. Herein we show that the An. oswaldoi found in the state of Putumayo is genetically similar to specimens from the state of Amapá in Brazil and from the Ocama region in the state of Amazonas in Venezuela, and that this form harbors natural infections of P. vivax. That An. rangeli and this member of the An. oswaldoi complex are incriminated as malaria vectors in Putumayo, is a novel finding of significance for malaria control in Southern Colombia, and possibly in other areas of Latin America.
Resumo:
Aspects related to hatching, life time, number of blood meals to molt, mortality, feeding time and postfeed defecation delay for each instar of Meccus phyllosomus, M. mazzottii, and M. bassolsae, life-cycle were evaluated and compared in two cohorts of each of those three species, fed on hens or rabbits. No significant (p > 0.05) differences were recorded among cohorts fed on hens respect to cohorts fed on rabbits in M. phyllosomus and M. mazzottii and the average time of hatching was 21.5 days for cohorts fed on hens and 22.5 for cohorts fed on rabbits. Average egg-to-adult development times were no significant (p > 0.05) different between both cohorts of M. phyllosomus and M. mazzotti, independent of the blood meal source. The average span in days for each instar fed on hens was not significantly different to the average span for each instar fed on rabbits, when comparisons were made by species. The number of blood meals at each nymphal instar varied from 1 to 6 in both cohorts of each species. The mortality rates were higher on older nymphs, in both cohorts of M. phyllosomus and M. bassolsae, whereas they were higher on first instar nymphs on M. mazzottii. Mean feeding time was no significant (p > 0.05) different in triatomines fed on hens or fed on rabbits, when each species were compared separately. A similar number of nymphs of each cohort, completed the cycle. Defecation delay was no significant (p > 0.05) different when cohorts fed on hens and fed on rabbits were compared by species. Most of the studied parameters showed no significant (p > 0.05) differences among those cohorts fed on hens and for fed on rabbits, which could mean a high degree of association of those species with birds as much as mammals, under wild conditions, increasing their capacity to colonize human dwellings.