79 resultados para Mohr-Coulomb Criterion
Resumo:
The objective of this work was to evaluate the feasibility of selection for higher glandular trichome densities, as an indirect criterion of selection for increasing repellence to spider mites Tetranychus urticae, in tomato populations derived from an interspecific cross between Lycopersicon esculentum x L. hirsutum var. glabratum PI 134417. Trichome densities were evaluated in 19 genotypes, including 12 from advanced backcross populations, derived from the original cross L. esculentum x L. hirsutum var. glabratum PI 134417. Counts were made both on the adaxial and abaxial leaf surfaces, and trichomes were classified into glandular types IV and VI, other glandular types (types I+VII), and nonglandular types. Mite repellence was measured by distances walked by mites onto the tomato leaf surface after 20, 40 and 60 min. Spider mite repellence biotests indicated that higher densities of glandular trichomes (especially type VI) decreased the distances walked by the mites onto the tomato leaf surface. Selection of plants with higher densities of glandular trichomes can be an efficient criterion to obtain tomato genotypes with higher resistance (repellence) to spider mites.
Resumo:
The reasons why we care about soil fauna are related to their intrinsic, utilitarian and functional values. The intrinsic values embrace aesthetic or moral reasons for conserving below-ground biodiversity. Unfortunately, the protection of soil invertebrates has rarely been a criterion for avoiding changes in land use and management. Utilitarian, or direct use values, have been investigated more extensively for fungi, bacteria and marine invertebrates than for soil fauna. However, some traditional remedies, novel enzymes and pharmaceutical compounds have been derived from earthworms, termites and other groups, and gut symbionts may provide microbial strains with interesting properties for biotechnology. The functional importance of soil invertebrates in ecosystem processes has been a major focus of research in recent decades. It is suggested herein that it is rarely possible to identify the role of soil invertebrates as rate determinants of soil processes at plot and ecosystem scales of hectares and above because other biophysical controls override their effects. There are situations, however, where the activities of functional groups of soil animals, even of species, are synchronised in space or time by plant events, resource inputs, seasonality or other perturbations to the system, and their emergent effects are detectable as higher order controls.
Resumo:
The objective of this work was to propose a way of using the Tocher's method of clustering to obtain a matrix similar to the cophenetic one obtained for hierarchical methods, which would allow the calculation of a cophenetic correlation. To illustrate the obtention of the proposed cophenetic matrix, we used two dissimilarity matrices - one obtained with the generalized squared Mahalanobis distance and the other with the Euclidean distance - between 17 garlic cultivars, based on six morphological characters. Basically, the proposal for obtaining the cophenetic matrix was to use the average distances within and between clusters, after performing the clustering. A function in R language was proposed to compute the cophenetic matrix for Tocher's method. The empirical distribution of this correlation coefficient was briefly studied. For both dissimilarity measures, the values of cophenetic correlation obtained for the Tocher's method were higher than those obtained with the hierarchical methods (Ward's algorithm and average linkage - UPGMA). Comparisons between the clustering made with the agglomerative hierarchical methods and with the Tocher's method can be performed using a criterion in common: the correlation between matrices of original and cophenetic distances.
Resumo:
The objective of this work was to quantify the genetic diversity of elite genotypes of irrigated barley in the Brazilian savanna. Thirty elite barley genotypes from Embrapa Cerrados' collection were evaluated using 160 RAPD markers, 12 agronomic traits related to yield components, and 10 malting quality parameters. The genetic dissimilarity matrices based on molecular markers, quantitative traits, and malting quality characters were calculated and a cluster analysis was performed using the unweighted pair-group method with arithmetic mean (UPGMA) as grouping criterion. High genetic diversity among accessions were observed. The estimated genetic dissimilarities were weakly correlated, showing the complementarity of the different character groups. Selection indices and graphical dispersion analysis allowed the selection of promising genotypes and the indication of suitable crosses for maximizing the heterotic effects in breeding programs for irrigated barley in the Brazilian savanna.