144 resultados para Modelagem qualitativa
Resumo:
OBJETIVO: O objetivo deste estudo foi avaliar a confiabilidade da análise visual qualitativa dos achados de imagem de ressonância magnética (RM) em recém-nascidos prematuros extremos. MATERIAIS E MÉTODOS: Uma coorte de 45 recém-nascidos de idade gestacional de 30 semanas ou menos foram inseridos neste estudo. Dois neurorradiologistas, cegos quanto aos dados clínicos, avaliaram de forma independente as RMs de crânio em relação aos seguintes achados: presença de hipersinal difuso e excessivo (DEHSI), dilatação dos ventrículos laterais, hemorragia intracraniana, áreas de sinal anormal em núcleos da base e córtex, áreas de aspecto cístico, deformidades ventriculares, dilatação do espaço subaracnóideo, leucoencefalomalácia precoce e anormalidades corticais. RESULTADOS: Quarenta e um pacientes (91,1%) apresentaram exame de RM anormal. Os achados mais comuns foram DEHSI (75,6%) e dilatação dos ventrículos (42,2%). A concordância interobservadores entre os dois experientes neurorradiologistas foi alta (κ > 0,60) para a maioria das alterações detectadas pela RM. O valor de kappa foi moderado (κ = 0,52) para alargamento do espaço subaracnoide e fraco (κ = 0,39) para DEHSI na substância branca. CONCLUSÃO: A avaliação qualitativa da maioria dos achados de imagem por RM de neonatos prematuros extremos foi considerada confiável, entretanto, a presença de DEHSI na substância branca demonstrou um grau de confiabilidade menor
Resumo:
The molecular basis of modern therapeutics consist in the modulation of cell function by the interaction of microbioactive molecules as drug cells macromolecules structures. Molecular modeling is a computational technique developed to access the chemical structure. This methodology, by means of the molecular similarity and complementary paradigm, is the basis for the computer-assisted drug design universally employed in pharmaceutical research laboratories to obtain more efficient, more selective, and safer drugs. In this work, we discuss some methods for molecular modeling and some approaches to evaluate new bioactive structures in development by our research group.
Resumo:
The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.
Resumo:
In this work, a numerical modeling analysis of the gas-phase decomposition of SF6 / O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes and the effect of the parameters' uncertainties were determined. The model was compared with experimental data for the plasma etching of silicon and with the calculated results for the CF4 / O2 system. In both systems the main etching agent is the fluorine atom and the concentration of the major species depends on the composition of the mixture. The etching rate is greater for SF6 / O2.
Resumo:
Modeling methods to derive 3D-structure of proteins have been recently developed. Protein homology-modeling, also known as comparative protein modeling, is nowadays the most accurate protein modeling method. This technique can produce useful models for about an order of magnitude more protein sequences than there have been structures determined by experiment in the same amount of time. All current protein homology-modeling methods consist of four sequential steps: fold assignment and template selection, template-target alignment, model building, and model evaluation. In this paper we discuss in some detail the protein-homology paradigm, its predictive power and its limitations.
Resumo:
Molecular Modeling is an important tool in drug design and it is very useful to predict biological activity from a library of compounds. A wide variety of computer programs and methods have been developed to visualize the tridimensional geometry and calculate physical properties of drugs. In this work, we describe a practical approach of molecular modeling as a powerful tool to study structure-activity relationships of drugs, including some antibacterials, hormones, cholinergic and adrenergic agents. At first, the students learn how to draw 3D structures and use them to perform conformational and molecular analysis. Thus, they compare drugs with similar pharmacological activity by superimposing one structure on the top of another and evaluate the geometry and physical properties.
Resumo:
Biological nitrogen fixation, catalyzed by nitrogenases, contributes about half of the nitrogen needed to global agriculture. For forty years synthetic chemists and theoreticians have tried to understand and model the structure and function of this important metalloenzyme. Ten years after the first report on the crystal structure of the MoFe protein, scientists still have not been able to synthesize a chemical equivalent of the FeMo cofactor nor the structure knowledge revealed the key to its catalytic activity. This paper with 104 references presents a review of the most relevant advances in chemical nitrogen fixation and their relation with the nitrogenases.
Resumo:
Quinine and quinidine are well-known 4-quinolinecarbinolamines that exhibit antimalarial activity, but, in contrast, their epimers 9-epiquinine and 9-epiquinidine are almost inactive. Literature data are conflicting in describing the 4-quinolinecarbinolamine interaction mode with the molecular target, the ferriprotoporphyrin IX [Fe(III)PPIX]. In the present paper, a pharmacophore is proposed based on the binding of the non-aromatic nitrogen to the iron atom. The 4-quinolinecarbinolamine antimalarials were superimposed on the pharmacophore under consideration and complexes with Fe(III)PPIX were constructed. Conformational analyses of the complexes were performed applying the MM+ molecular mechanics method. The analysis of the complexes showed that the proposed ligand mode is possible although it does not explain the activity differences between epimers. A discussion of the structural aspects is also provided.
Resumo:
The results of a survey of institutions offering undergraduate studies, with the objective of evaluating the importance of Qualitative Analytical Chemistry for Chemistry courses in Brazil, are presented and discussed. Judging by the data, the content of the course of Qualitative Analytical Chemistry is considered by the Brazilian institutions offering undergraduate studies to be a body of knowledge essential for the formation of the chemist. This aspect is deemed valid for both baccalaureate and teaching license studies.
Resumo:
In recent years, because of the need for a more flexible curriculum established by the Curriculum Guidelines of the National Brazilian Education (law 9394/96), the pedagogical project of the Chemistry course of FFCLRP/USP has undergone alterations, amongst them the gradual reduction of the hours devoted to the discipline Qualitative Analytical Chemistry. In this context, this discipline has been carefully analyzed and reorganized in order to allow the elimination of redundancies and the introduction of activities considered important for the professional formation of both chemists and chemistry teachers. In this work, we will discuss the main strategies adopted in this reorganization with the objective of making the teaching/learning process more dynamic and efficient.
Resumo:
The purpose of the present study is to evaluate the atmospheric behavior in the dispersion of the pollutants SO2, PM10 and NOx emitted by the President Medici power plant in Candiota, RS. The RAMS atmospheric model was applied and the simulations were conducted from april in 20 to 24, 2004. The concentrations of the pollutants simulated by RAMS were compared with the data measured at the air quality monitoring stations. The results showed significant influence of the emissions generated by the power plant on the concentration of the pollutants.
Resumo:
Trypanosoma cruzi is a protozoan parasite that causes a severe disease (Chagas'disease) in Central and South America. The currently available chemotherapeutic agents against this disease are still inadequate. The enzyme trypanothione reductase (TR) is considered a validated molecular target for the development of new drugs against this parasite. In this regard, a series of arylfurans based on 2,5-bis-(4-acetamidophenyl)furan was synthesized and tested for their in vitro inhibitory activity against TR. Molecular modeling studies of putative enzyme-inhibitor complexes revealed a possible mechanism of interaction. From synthesized compounds, a benzylaminofuran derivative was found to be more active than the lead compound.
Resumo:
We present a theoretical study of solvent effect on C2H5N···HF hydrogen-bonded complex through the application of the AGOA methodology. By using the TIP4P model to orientate the configuration of water molecules, the hydration clusters generated by AGOA were obtained through the analysis of the molecular electrostatic potential (MEP) of solute (C2H5N···HF). Thereby, it was calculated the hydration energies on positive and negative MEP fields, which are maxima (PEMmax) and minima (PEMmin) when represent the -CH2- methylene groups and hydrofluoric acid, respectively. By taking into account the higher and lower hydration energy values of -370.6 kJ mol-1 and -74.3 kJ mol-1 for PEMmax and PEMmin of the C2H5N···HF, our analysis shows that these results corroborate the open ring reaction of aziridine, in which the preferential attack of water molecules occurs at the methylene groups of this heterocyclic.
Resumo:
In this work, the combustion process of ammonium dinitramide, ADN, has been modeled in two different situations: decomposition in open environment, with abundant air and decomposition in a rocket motor internal environmental conditions. The profiles of the two processes were achieved, based on molar fractions of the species that compose the products of ADN combustion. The velocity of formation and quantity of species in the open environment was bigger than the ones in the rocket motor environment, showing the effect of the different atmosphere in the reactions kinetics.